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Abstract 

We discuss agent-based models as research tools for developmental and social psychology. “Agents” are 

computer-based entities, e.g., individual people or animals. To construct an agent-based model, the 

modeler assigns the agents real-world roles and rules, and then studies the model through conducting 

simulation experiments in which the agents follow their rules, and observes real-time data. Agent-based 

models are dynamic, expressive, and afford immediate feedback. Agent-based models are particularly 

useful for understanding complex phenomena, e.g., the dynamics of multiple individual learners 

interacting with their peers and with artifacts in their environment and the emergent group patterns 

arising over time from these multiple interactions. We describe an agent-based simulation that we 

designed as a “thought experiment” to shed light on the ongoing debate between two theories of 

learning, constructivism and social constructivism. When “running” the models, unexpected 

consequences arise, and this leads to successive refinement of theory.  Practicing ABM in psychology 

research can potentially support the development of richer theoretical models that coordinate 

complementary perspectives as viable complements of an integrated explanatory structure.  
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Piaget? Vygotsky? I’m Game!:  

Agent-Based Modeling for Psychology Research 

 

 “[T]he social fact is for us a fact to be explained, not to be 

invoked as an extra-psychological factor.”  

Piaget (1962/1951, p. 4)  

“The development of thought is to Piaget, a story of the 

gradual socialization of deeply intimate, personal, autistic 

mental states. Even social speech is represented as 

following, not preceding, egocentric speech.”  

Vygotsky (1962/1934, p. 18) 

In this paper, we present a new methodology for conducting research on psychology theory, 

agent-based modeling. Agent-based modeling (hence ABM) has been increasingly used by natural 

scientists to study a wide range of phenomena such as the interactions of species in an ecosystem, the 

interactions of molecules in a chemical reaction, the percolation of oil through a substrate, and the food 

gathering behavior of social insects (Sole & Goodwin, 2000; Bonabeau, Dorigo, & Théraulaz, 1999; 

Troisi, Wong & Ratner, 2005; Wilensky & Reisman, 1998, 2006). 

What all these studies have in common that make them particularly conducive to ABM treatment 

is that the focal phenomenon in question can be construed as a pattern resulting from the cumulative 

activity of many elements. For example, the phenomenon of pressure, e.g., in a gas chamber, is 

explained as the cumulative collisions of myriad particles with the walls of the chamber. Such 

phenomena, which lend themselves to two or more layers of description, e.g., particle collisions are the 

“micro” events, and pressure is the “macro” event, have been termed complex, and are collectively 

studied in a relatively young interdisciplinary field called complex systems or complexity studies 
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(Axelrod, 1999; Bar-Yam, 1997; Holland, 1995; Kauffman, 1995; Wimsatt, 1986, cited in Clark, 1997, 

p. 114). Typical of complex phenomena is that the cumulative (‘aggregate’) patterns or behaviors at the 

macro level are not premeditated or directly actuated by any of the “lower-level” micro elements. For 

example, flocking birds do not intend to construct an arrow-shaped structure. Rather, each element 

(“agent”) follows its “local” rules, and the overall pattern arises as epiphenomenal to these multiple local 

behaviors—the overall pattern emerges. The agents can be instantiated in the form of a computer 

program that specifies their rule-based behaviors. ABM is thus particularly powerful for studying 

complex phenomena, because once the modeler assigns agents their local rules, the modeler can set 

these virtual agents into motion and watch for any overall patterns that arise from the agents’ 

interactions. For example, the modeler might assign a group of virtual birds a set of rules and then watch 

their interactions to see whether typical flock structures emerge (Reynolds, 1987; see also Wilensky, 

1998).  

Whereas initially complex-systems methods and perspectives arose from the natural sciences, 

complexity, emergence, and micro and macro levels of description of phenomena are all highly relevant 

to research in the social sciences. Indeed, the recent decades have seen a surge in social-science studies 

employing ABM (Epstein & Axtell, 1996; Diermeier, 2000; Axelrod, 1997). In this paper we focus on 

the potential of ABM as research tools for formulating and critiquing social-science theory. We do so by 

looking at a specific example, the debate between Piagetian and Vygotskiian accounts of learning, and 

we introduce our main result as an instance of the methodology we are advocating. We argue that ABM 

has potential to contribute to the advancement of theory in at least three major ways that we illustrate in 

this paper: (a) explicitizing—ABM computational environments demand an exacting level of clarity and 

specificity in expressing a theoretical model and provide the tools, structures, and standard practices to 

achieve this high level; (b) emergence—the computational power of ABM enables the researcher to 

mobilize an otherwise static list of conjectured behaviors and witness any group-level patterns that may 
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enfold through multiple interactions between the agents who implement these conjectured behaviors; 

and (c) intra/inter-disciplinary collaboration—the lingua franca of ABM enables researchers who 

otherwise use different frameworks, terminology, and methodologies to understand and critique each 

others’ theory and even challenge or improve the theory by modifying and/or extending the 

computational procedures that underlie the model. In fact, we invite other researchers to explore the 

advantages of including ABM models with their theories. To demonstrate the plausibility of such model-

based discourse, we welcome theory-of-learning researchers to challenge the model that we present in 

this paper.1 

What Is an Agent-Based Model? 

The agent-based model is the researcher’s idealized approximation of ‘how things work in the 

world.’ “Agents” are computer-based entities, e.g., “people.” The modeler creates the agents that are 

conjectured to be instrumental in the real-world phenomenon under study and assigns these agents rules 

that express the modeler’s conjecture as to real-world behaviors. The modeler also creates a virtual 

environment where these agents operate. Next the modeler conducts simulation experiments in which 

the agents play out their rules within the environment and in response to each other. Running these 

simulations is not just an animated enhancement of the programmed rules within a visual medium. The 

dynamic interactivity of these agents is such that it is often very difficult or even impossible to predict 

emergent outcomes from the agents’ individual rules and the environmental attributes. Moreover, the 

random values inherent in each simulation make for different outcomes each time a specific model is 

run. Thus, the craft of ABM involves “informed fiddling”: the modeler iteratively explores within a vast 

range of parameters, including the environmental settings and the logic of the agents’ behaviors, until a 

simulation is run that yields patterns that appear familiar from observations of real-world data. This 

virtual-to-real similarity does not constitute adequate proof of the hypothesized rules, yet it renders the 

                                                
1 After presenting a version of this paper at the Jean Piaget conference in June 2005, some researchers 
did respond to this challenge (e.g., Levin & Cole, 2006) 
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rules plausible and sets an agenda for attempting to validate the rules through systematic exploration of 

the model space as well as through complementary methodologies.  

The proposed computer-based methodology is a new important research tool in the complement 

of tools available to social-science researchers. Specifically, ABM offers a methodological framework 

with the following unique set of attributes: (a) ABM shares the rigor of laboratory experiments and 

amplifies this rigor; (b) In ABM, the observer is literately “invisible” to the participants in ways that 

cannot be achieved in ethnographical interventions; (c) ABM enables “to see eternity in an hour,” i.e., to 

rapidly conduct simulations of longitudinal studies and conversely, ABM can break down a brief 

phenomenon into a sequence of discrete actions; (d) ABM flexibly integrates the “micro” perspective, 

that is the thinking and behavior of individual participants as collected from, for example, clinical 

interviews, with the “macro” perspective that is the overall large-scale patterns in group behavior that is 

typically collected from studies involving thousands of participants; and (e) ABM is a risk-free 

environment—researchers can investigate aspects of human behavior under conditions that would 

compromise the safety and sentiments of human subjects, e.g., in studying group behaviors that emerge 

in the emergency evacuation of a building. 

The computational “language” in which researchers express their hypotheses, e.g., “IF–THEN” 

statements, demands of the researchers high precision, explicitness, and specificity in deploying their 

conjectured theoretical models. Thus, peers who are sufficiently proficient in the modeling language can 

evaluate the coherence of the computer-based model by examining the underlying modeling code. Such 

peers can modify, revise, or extend the model to investigate alternative explanatory structures. Thus, 

ABM is a form of pellucid scholarly rhetoric. In particular, ABM has the capacity to enable scholars 

operating within different methodologies to communicate in a lingua franca.2 In this paper, we 

                                                
2 For the past two decades, Wilensky has been engaged in developing NetLogo (Wilensky, 1999) an 
ABM environment specifically designed to be easy to learn and to “read” that can serve as such a lingua 
franca. 
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demonstrate the utility of ABM methodology to illuminate a particular controversy in theory of learning, 

constructivism versus socio-constructivism. 

What’s New About This (or, Haven’t Computer Models Been Around for Quite a While?) 

It is said that a picture is worth a thousand words. Paraphrasing this adage, Goldenberg, Lewis, 

and O’Keefe (1992) have argued that a moving picture is worth a thousand pictures. Motion has often 

been cited as an advantage of computational representations, along with computational speed, data 

logging and accessing, and interlinked representations. We wish to further paraphrase that an agent-

based model is worth a thousand moving pictures. More precisely, we wish to emphasize that ABM 

bears critical features that make it a much more powerful learning tool as compared to animations or 

visualizations.  

ABM dynamic visualizations are open ended. Typically, each ABM “run” begins with a set of 

agents bearing random values, so that the initial conditions usually differ from run to run. Moreover, a 

measure of randomness can be incorporated into the execution of agent procedures, resulting in end 

states that may differ in details from run to run even if these runs share initial conditions. Yet the 

randomness inherent in the setting and running of the simulations only contribute to the psychological 

effect of witnessing overall emergent patterns that may be shared across these superficially different 

simulations. Perhaps most important to researchers, though, is the malleability of the ABM simulation, a 

malleability that enables researchers to continuously explore the implications of modifying their 

theoretical model. The malleability of ABM simulations is technically enabled by the simplicity of the 

modeling “code” in which the agent rules are expressed (see later sections). Yet the very choice to 

model phenomena from the agent perspective (micro) and not, as has been the general rule in the 

sciences, from a global “aggregate” perspective (macro), is associated with the unique epistemic 

affordances of agent-based explanatory mechanisms. Both agent-based and aggregate models provide 

tools for articulating explanatory coherence—ABM are expressed in rules (procedures) and aggregate 
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models are expressed in differential equations. Yet whereas agent-based rules are generative, aggregate 

rules are summative. That is, agent-based models express a priori the ‘doing’ underlying the 

phenomena, whereas aggregate models capture a posteriori the global relations between aggregates of 

agents (without explicitly providing insight into the causality underlying these global relations). Thus, 

ABM and aggregate modeling are not commensurate or interchangeable epistemic forms for thinking 

about phenomena—they are radically different. Ultimately, both approaches are useful and can be seen 

as complementary to scientific practice (Wilensky & Stroup, 2003; Wilensky & Abrahamson, 2006). 

Whereas we focus on the phenomenon of learning, as a case study, this type of experimentation, we 

argue, can illuminate many issues facing developmental and social psychologists as well as education 

researchers.  

In the remainder of this paper, we begin by explaining our choice of the phenomenon of 

‘learning’ as a case study for demonstrating the potential of ABM, we continue by further explaining 

complexity studies and agent-based modeling, and then we present the particular model we built for this 

study, including findings from running this model and interpretations of these findings, which lead to 

our conclusions 

Background 

Recently, at an international conference, an author was criticized for espousing both 

constructivism and social-constructivism as theoretical frameworks for conducting research of student 

learning, as though these twain shall never meet, let alone collaborate. Despite efforts to reconcile these 

schools of thought (e.g., Tudge & Rogoff, 1989; Cole & Wertsch, 2002; Fuson & Abrahamson, 2005), 

by and large they are still considered rival rather than complementary. The rift between these schools is 

most evident in the ongoing efforts of Learning Sciences scholars to create new paradigms that 

encompass both schools. For example, Greeno (2005) explains that his situative perspective  
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“…builds on and synthesizes two large research programs in the study of human 

behavior….cognitive science [that] focuses on individuals, although it occasionally considers 

social interactions as context of individual cognition and learning….[and] interactional studies 

[that] focuses on performance of groups of individuals engaged in joint action with material and 

informational systems in their environment….[Yet] neither [of these research programs], by 

itself, can explain learning.”  

Why is this dichotomy still prevalent? It could be that the lingering rivalry between cognitive 

and interactional perspectives on learning is a vestige of college and graduate-school introductory 

courses that neatly compartmentalize the literature into juxtaposed schools of thought—a juxtaposition 

that traces the historical evolution of research on learning by foregrounding distinctions between schools 

but does not provide tools for examining the complementarity of these paradigms. Also, some scholars 

may inadvertently disseminate and, thus, perpetuate an apparent schism in the field of research on 

learning, because they are still entrenched in paradigms they themselves were schooled in (Kuhn, 1962). 

So we are faced with what appears to be an intellectual impasse, an impasse that perpetuates an 

historical schism that may be ill founded to begin with. It appears as though we haven’t the 

methodological wherewithal to ponder this juxtaposition in ways that we would be comfortable to 

endorse as experimentally rigorous, theoretically coherent, and rhetorically compelling. We submit that 

holding on to such a position—that one of the schools is essentially more revealing of patterns and 

mechanisms of learning—limits the scope of effective research and educational design, especially 

design-research for classroom learning.  

It could be that the two “camps” do not interact, because they lack a common “campground.” 

That is, fruitful discourse between Piagetians and Vygotskiians is constrained, because they operate in 

parallel paradigms including separate perspectives, methodologies, and terminology.  
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The challenge and consequent rarity of effective Piagetian–Vygotskiian explanatory models may 

thus be addressed by forms of modeling that are adequate for both perspectives. We now further discuss 

agent-based modeling, which we suggest as a methodology that bridges the two theoretical perspectives 

synergistically. 

Agent-Based Modeling (ABM) 

“When I observed phenomena in the laboratory that I did not understand, I would also ask 

questions as if interrogating myself: ‘Why would I do that if I were a virus or a cancer cell, or the 

immune system.’ Before long, this internal dialogue became second nature to me; I found that 

my mind worked this way all the time” (Salk, 1983, p. 7). 

This paper proposes the viability of agent-based modeling (ABM) environments (e.g., 

‘NetLogo,’ Wilensky, 1999a; ‘Swarm,’ Langton & Burkhardt, 1997; ‘Repast,’ Collier & Sallach, 2001) 

as research tools for articulating and examining hypotheses (Wilensky, 2001; Wilensky & Reisman, 

1998, 2006) in the domains of developmental and social psychology, such as in the research of learning. 

ABM of human behavior is a growing research practice that has shed light on complex dynamic 

phenomena (e.g., Kauffman, 1995; Holland, 1995) such as residential segregation (Schelling, 1971), 

wealth distribution (Epstein & Axtell, 1996), negotiation (Axelrod, 1997), and organizational change 

(Axelrod & Cohen, 1999). Learning, too, is complex—it involves multiple agents interacting with 

artifacts and peers—so research of learning may, too, benefit from ABM. To demonstrate the utility of 

ABM as “thinking tools” for psychology research, we have designed and implemented in NetLogo the 

“I’m Game!” simulation, in which agents, computer-based entities, “learn” through playing either as 

individuals, social interactors, or both. 

The NetLogo environment (Wilensky, 1999a) was designed with the explicit objective that it 

provide a “low threshold, high ceiling” for students and researchers alike to engage in agent-based 

modeling (Wilensky, 1999b; Tisue & Wilensky, 2004). The vision is that building simulations will 
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become a common practice of natural and social sciences scholars investigating complex phenomena—

the scholars themselves, and not hired programmers, build, run, and interpret the simulations. To these 

ends, the NetLogo “language” has been developed so as to be accessible—easy to write, read, and 

modify, thus making NetLogo very much distinct form common general-purpose programming 

languages like Java and C++. 

In order to introduce ABM further, we will examine, in later sections, the NetLogo code that 

underlies the “I’m Game!” simulation and expresses the theoretical assumptions of the modeler (on how 

social entities are expected to behave under particular conditions). The entire NetLogo code for the “I’m 

Game!” model occupies about five pages of sparse programming “text,” or a total of just over 820 

“words” and symbols (under 4000 characters), of which 455 are the core code, and the rest is auxiliary 

to the simulation itself—various setup, monitoring, and graphing procedures (see Appendix A). Thus, a 

caveat is, perhaps, due at this point, for readers with little or no experience with computer-based 

simulations who are concerned with the brevity of the code vis-à-vis their bookshelves-full of relevant 

literature. First of all, the model does not purport to contain interpretations of behaviors but only to 

support an inquiry into these behaviors. Secondly, it is the nature of NetLogo-type code that complicated 

syntactical structures can be condensed into short “sentences.” Thirdly, the nested structure of computer 

procedures, combined with a defined parameter space and a randomness generator, allows for a limited 

number of specifications to generate a panoply of individual scenarios (we can “collapse” the 

combinatorial space of possible events). That is, the dynamics and randomness-capacity of the 

simulations is specifically geared so as to allow the narrative of various case studies to emerge through 

running the simulation with a “cast” of numerous agents who are operating in parallel. In other words, 

enfolded or embedded within the condensed code is the potentiality of literally endless “cases,” a 

potentiality that bears out when the program is activated and the data are automatically collected and 

measured.  
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The construct of ‘emergence’ implicates both a limitation of mental computation, i.e., that 

certain phenomena surprise us, because we do not have the computational wherewithal to infer them 

from the ‘givens’ (Wilensky, 1993, 1997; Wolfram, 2002)—and the utility of ‘thinking with’ technology 

(Norman, 1991; Salomon, Perkins, & Globerson, 1991; Wilensky, 1999, 2002). For example, it is 

difficult to anticipate the outcome in the following scenario:  

A termite colony is foraging in a landscape strewn with randomly distributed woodchips. Each 

termite individually follows the following rule: “Walk forward in some random orientation. If 

you come upon a chip, pick it up and carry it in a random orientation. If you come upon another 

chip, search for an open space and place there the chip you are carrying” (Resnick, 1994; 

Wilensky, 1998). 

When hundreds of simulated termites each follow these rules, the stable end result is that all the 

chips are collected into a single large pile.  

The apparent mental challenge in anticipating the ‘termites’ phenomenon is that the output of 
each step constitutes input for the next step—the mind is apparently overwhelmed by the 
computational demands of iteratively tracking these myriad parallel events. For a novice at 
complexity, there are no apparent heuristics to inform a shortcut or leap from the ‘start’ to the 
‘end.’ Thus the epistemological position that the ultimate outcome ‘emerged,’ and thus the need 
for multi-agent modeling-and-simulation environments to connect from the ‘micro’ perspective 
on agent rules to the ‘macro’ perspective on global patterns (Wilensky, 1997).  
 
In summary, ABM shares with classical experimental designs the logic that particular aspects of 

a studied phenomenon are foregrounded for observation, measurement, data collection, and analysis. 

However, ABM is distinct from classical designs in that the experiment is simulated—it does not 

actually happen “out there”—not even in a classical laboratory. In this sense, ABM is more like a 

thought experiment, a computer-enhanced Gedankenexperiment—it is a means of exploring the 

eventualities of beginning from a set of well defined simple rules and allowing the experimental 

“subjects” to act out these rules with a measure of randomness, possibly giving rise to surprising group 
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patterns. Ultimately, results of these experiments must be interpreted with caution. Even if group 

patterns emerge that appear convincingly similar to behaviors “in the world,” one should maintain 

salubrious skepticism, in case critical factors were not included in the model. But, then again, such 

tenuousness is a feature of any post-Popperian scientific research.3 

Learning Through Modeling 

Modeling is not only for professional scientists. Researchers of learning concerned with the 

design of learning environments have pointed to the efficacy of building models as a form of learning 

(Hmelo-Silver & Pfeffer, 2004; Lesh & Doerr, 2003; Resnick, 199x; Wilensky, 1997; 1999b; Wilensky 

& Reisman, 1998, 2006). A process of modeling may consist of foregrounding elements of phenomena 

under inquiry, including these elements’ properties and behaviors, and accounting for these phenomena, 

e.g., by implementing explanatory mechanisms of causality. Through modeling, students (in the broad 

sense of ‘learners’ of all ages, walks of life, and expertise) concretize and articulate their understanding 

of content in the form of some expressive artifact, such as a diagram, a narrative, a mathematical 

equation, or a computer procedure. Students can then display these artifacts in a public forum, explain 

their intended interpretation of these artifacts (i.e., what they are modeling), and negotiate with their 

peers both the adequacy of the model (that it is modeling what it purports to model) and their 

understanding of the phenomena as expressed in the model. Students discuss their understanding and 

modify it based on their own insight as well as on their peers’ response.  

One form of modeling that has been receiving increased attention is computer-based modeling. 

In computational environments that provide feedback to the user, students’ conceptual models and 

virtual models are mutually informative. That is, students’ reasoning and their computer procedures 

                                                
3 “A good scientific model….should have a certain ‘open texture’, giving scope for further exploration: 
it should not merely seek to summarise what is known. Then it can be a research tool as well as a 
teaching aid. The model itself can be studied for its properties and this may suggest new possibilities (or 
impossibilities) and raise new questions…. Of course you should never believe models, they only have 
an ‘as if’ status and they are likely to let you down any time” (Cairns–Smith, 1996, p. 46-7). 
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develop reciprocally: students “debug their own thinking”—that is, detect and correct their own 

misconceptions—through debugging the program procedures (Papert, 1980). For instance, students who 

attempt to cause a computer-based agent to bounce across the interface, realize that a “go up, go left, go 

down” procedure does not result in bouncing as they know it “in the world.” Through this breakdown 

experience, bouncing “announces itself afresh,” if to paraphrase Heidegger (1962). Specifically, students 

become aware of the arc motion of the desired ballistic trajectory, and may be, thus, stimulated to 

formulate an improved procedure that results in the desired arc. Thus, through the very act of 

implementing within a computational environment their model of a phenomenon, learners have 

opportunities to develop more sophisticated understanding of the phenomenon. 

Agent-based modeling is particularly suitable for learning complex phenomena (Wilensky, 

1999b, 2002; Wilensky & Resnick, 1999; Jacobson & Wilensky, 2005; Resnick, 1994). One reason 

complex phenomena are difficult to understand is that they can be perceived from two or more levels of 

coherency. For instance, a flock of birds flying in an arrow-shaped formation can be just that—a flock 

(the “macro level”)—or it could be regarded as a collection of individual birds each following some 

rules (the “micro level”). Both perspectives on the flock, the micro and the macro, are necessary to 

understand the flocking phenomenon, because it is through the rule-based interactions of the individual 

birds that the flock form emerges as a recognizable entity in the world. Therefore, a computer-based 

environment for modeling a flock and simulating its emergence requires tools for programming 

individual agents, e.g., the birds, parallel processing capabilities for the birds to operate simultaneously 

and interact, and functions for quantifying aggregate (macro) properties, such as the total number of 

birds or their mean orientation. A group of learners is a complex phenomenon, too, and so we have used 

the NetLogo multi-agent modeling-and-simulation environment to create the model that accompanies 

this paper.  
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How do flocks relate to students? In creating the “I’m Game!” model, we sought to understand 

learning as an individual process that occurs within a social context, in which individuals both contribute 

to and, in turn, are influenced by this context of fellow learners. At the same time, we were interested in 

measuring the impact of rules we assign to individual students on the learning of the group.4 That is, we 

sought to examine any emergent group-level phenomena that may result from interactions between 

individual learners.  

In summary, modeling for learning affords much more than capturing a post facto product of a 

completed inquiry process. On the contrary, building the model is intrinsically intertwined in the 

learning process itself. The model is “an object to think with” (Papert, 1980). Computer-based modeling 

environments, in particular, bear constraints that scaffold practices with strong parallels to theoretical 

modeling: specificity and consistency in terminology, rigor in articulating relations between elements 

(rules, topology, temporality), definitions of the parameter space that is informed by implicit hypotheses, 

and coherence, which is tied to the esthetics and elegance of the code and the interface (a latter-day 

Occam’s Razor). Also, computation-based simulations can stimulate scholarly discourse by facilitating a 

sharing of methodology, experimentation, and data at a level of explicitness that enables thorough 

scrutiny and precise replicability (Wilensky, 2000; Tisue & Wilensky, 2004). 

We have discussed researchers’ increasing use of ABM for revealing patterns is complex social 

phenomena, and we have discussed the role of modeling in learning. In the remainder of the paper, we 

examine a case study of modeling a complex psychological phenomenon, ‘learning,’ and discuss results 

from operating this simulation. In particular, we will focus on how building the “I’m Game!” model of 

‘learning through playing' transposed the negotiation between two theoretical camps to a shared 

                                                
4 By “group learning” we are not referring to collaboration-oriented distributed-cognition literature (e.g., 
Hutchins, 1995) but to indices that capture aggregate aspects of a collection of individual learners’ 
independent behaviors. That is, in building our model, we did not intend to feature intentional 
collaboration between agents with a common objective.  
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campground where, rather than translating between camp-specific terminology, we adopted the 

computer-based lingua franca of NetLogo code to express the theoretical models of both camps. 

Agent-Based Modeling: A Case of Modeling ‘Learning Through Playing’ 

The “I’m Game!” model of ‘learning through playing” was created with the following 

objectives: (1) to demonstrate the viability of agent-based modeling (ABM) for examining 

socio/developmental-psychological phenomena; (2) to illustrate the potential of ABM as a platform 

enabling discourse and collaboration between psychologists with different theoretical commitments; 

and, specifically, (3) to visualize the complementarity of Piagetian and Vygotskiian explanations of how 

people learn.5 

We strove to create a simulation that would be simple enough to carve the theoretical models at 

the joints yet would still allow a meaningful distinction between them. This reducto exercise proved 

useful as a means toward implementing the theoretical models in the NetLogo code, in the form of 

simple and concise procedures. 

To model human learning in social contexts, we chose the context of a group of children at play, 

because both Piaget (1962) and Vygotsky (1962) studied relations between playing and cognitive 

development.6 Also, games easily lend themselves to proceduralization in computer code as a set of 

                                                
5 To run this experiment, go to http://ccl.northwestern.edu/research/conferences/JPS2005/jps2005.html, 
an on-line web-page accompanying this paper, where you will find an “applet” (an interactive 
simulation embedded within an html page). The model itself is available from the authors. 
6 Piaget saw games as “ludic activity of the socialized being” (1962, p. 142)—assimilation-based forms 
of practicing the execution of schemas (see also Huizinga, 1955). “There are practice games, symbolic 
games, and games with rules, while constructional games constitute the transition from all three to 
adapted behaviors” (1962, p. 110). Rule-based games, specifically, result from, “collective organization 
of ludic activities” (1962, p. 113). For the main, Piaget studied the function of play vis-à-vis his stages 
of cognitive development. Vygotsky, too, saw games as crucial for development—although occupying a 
limited part of the child’s time, play is, “the highest level of pre-school development” (1978, p. 102). 
For instance, Vygotsky regarded, “make-believe play as a major contributor to the development of 
written language—a system of second-order symbolism” (1978, p. 111). However, Vygotsky interpreted 
humans’ urge to play within a broader psycho–social web of practices, for instance as a substitute to 
unfulfilled or unrealizable desires. Also, he stresses the pervasiveness of imagination and rules in play: 
in early play, tacit rules, e.g., “sisterhood,” are made explicit; and, “Just as the imaginary situation has to 
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conventional rules that agents follow. That is, we could have chosen the activity context of “Making 

Pasta” (recipe as rule-based), “Buying a Toy” (some algorithm that considers affective and financial 

input), or even “Making Music Together” (modifying pitch and tempo based on ongoing feedback from 

peers). But a context in which a group of participants are engaging in an explicitly ludic activity enables 

us, the modelers, to define unequivocally and, hopefully, incontestably, the specific objectives and 

underlying skills that participants need to develop in order to engage successfully in the organized 

activity. That is, by choosing a context in which skills are commonly discussed in terms of procedures 

(e.g., “If you see that someone is trying to steal base, then you should…etc”), we eschew debating the 

potentially controversial stance that any human activity is given to definition as a set of procedures that 

can be implemented as computer code. Finally, we chose a game involving marbles as homage to Piaget 

for his studies in these contexts (e.g., Piaget, 1971).7 

The design problem for this model-based thought experiment was to create a single environment 

in which we could simulate both “Piagetian” and “Vygotskiian” learning. In the interest of 

foregrounding the theoretical differences between these two perspectives, we focused on the differential 

emphases they put on the contribution of the social milieu to individual learning. Thus, we wanted to 

visualize and measure incremental improvement in learners’ performance in the marbles game under 

two conditions: (a) “Piagetian”—players interact with objects in their environment, accommodating 

their schemas based on feedback; (b) “Vygotskiian”—players learn through imitation by participating in 

an organized activity that includes others who are more experienced in performing a certain target skill; 

and (c) “Piagetian–Vygotskiian”—learners learn both from their own performance and from the 

                                                                                                                                                                   
contain rules of behavior, so every game with rules contains an imaginary situation” (1978, p. 75), even 
chess. He summarizes that, “The development from games with an overt imaginary situation and covert 
rules to games with overt rules and a covert imaginary situation outlines the evolution of children’s 
play” (1978, p. 96). The motivations for the gradual prominence of progressively rigid rules are 
children’s interest (simply running becomes boring) and a social caveat to distinguish more clearly 
between work and play coupled with the regulatory assimilation of a rule-based social ecology. 
7 Piaget reports on studies of children’s understanding and attitude towards the rules of the game of 
marbles. Our simulations focus not on learning rules but on learning to perform better in the game. 
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performance of others. Clearly, such typifications of “Piagetian” and “Vygotskiian” learning are gross 

caricatures of these theoretical models. Yet the simple agent rules stemming from these typifications 

may be sufficient to generate data revealing interesting behavioral patterns at the group level. One could 

always build further from these rules by complexifying the agents’ rules as well as the contexts of the 

simulated “world.” 

It is possible to simulate two different types of behavior—“Piagetian” or “Vygotskiian”—within 

the same model. This is achieved by defining separate sets of rules for the agents and running the 

simulation either under one of these conditions or the other. In fact, as we will detail in a later section, it 

is possible to simulate a combination of these two behaviors—“Piagetian and Vygotskiian”—by 

creating an option in which both types of behaviors are active and some selection procedure then 

governs a resolution as to which output shapes the subsequent behavior of the agents. For instance, the 

selection could be utilitarian—the output is selected on the basis of its goodness, that is, the degree to 

which it helps the agent achieve a specified objective.  

 [Insert Figure 1 about here] 

In the interest of enhancing the “legibility” of the simulation’s computer interface, we sought a 

marbles game in which a learner’s skill can be visually indexed even without resorting to quantitative 

metrics that usually appear in interface display windows in the form of numerical values. We eventually 

chose to model a game (see Figure 1) in which contestants all stand behind a line and each throws a 

marble, trying to land it as close as possible to a target line some “yards” away (30 NetLogo ‘units’ 

away). This game, we find, enables – at a glimpse – to evaluate how well players are doing, both as 

individuals (distance to the target line) and as a group (mean distance to the line or density). We will 

now explain the game in more detail, focusing on how we implemented, measured, and displayed 
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Piagetian and Vygotskiian learning.8 We will then turn to some of the core computer procedures 

underlying the simulation, so as to demonstrate how the NetLogo computational medium enables an 

implementation of theoretical models (see Appendix A for the entire NetLogo code of this model). 

Rules of the “I’m Game!” Agent-Based Model of Learning in Social Contexts 

Players stand in a row (see Figure 1a, above). They each roll a marble at a target line. Some 

players undershoot the line, some overshoot it (see Figure 1b). Players collect their marbles, adjust the 

force of their roll, and, on a subsequent trial (Figure 1c), improve on their first trial—they have 

“learned” as individuals. Gradually, the group converges on the target line (see Figure 1d, 1e, and 1f, for 

three later attempts).  

[Insert Figure 2 about here] 

Figure 2 shows the entire interface of the “I’m Game!” interactive simulation, including all 

controls and displays. We simulated four learning strategies: (a) “Random”—a control condition, in 

which players’ achievement does not inform their performance on subsequent attempts, unless they are 

exactly on target; (b) “Piagetian”—players learn only from their own past attempts; (c) “Vygotskiian”— 

players learn only by watching other players nearby, not from their own attempts; and (d) “Piagetian–

Vygotskiian”—players learn from both their own and a neighbor’s performance. In Figure 2 we see 

results from having run the simulation under the four conditions and over about eighty experimental 

runs, each consisting of thirty attempts. The graph in the center, “Average Distance,” shows the group 

mean distance from the target line by strategy, and the histogram on the right, “Strategy Averages,” 

records the group’s cumulative mean performance by strategy. (Note that attempts are measured by the 

absolute distance of a marble from the target line, so in both the graph and the histogram, lower scores 

are associated with better, or more skilled, performance.) 

                                                
8 When we drop the scare quotes from “Piagetian” and “Vygotskiian,” we still bear in mind that the 
model is a caricature of the theories. 
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To make the learning process more realistic, we implemented a random-error parameter that 

introduces “noise” into the learning process (in Figure 2, it is set to 12, in the slider that is third from 

bottom, on the left side of the interface). Also, we implemented the “#-Vygotskiian-neighbors” 

parameter (in Figure 2, “#-Vygotskiian-neighbors” is set to 10, in the second-from-bottom slider, on the 

left) that controls the number of neighbors each player observes in the Vygotskiian strategy (the player’s 

subgroup). Finally, we incorporated a “ZPD” (zone of proximal development) slider (see in the center of 

the button-and-slider section). This variable (here, set to 10) limits the range of performances that 

players can imitate. For instance, a player can imitate a neighbor only if the neighbor’s score was better 

by 10 units or less, as compared to the player. So (see Figure 2, the picture with the “marbles”), the 

bottom player cannot imitate the player three rows above it, because the difference between their 

respective performances is larger than the current value of ZPD, but it can imitate the players one and 

two rows above it, who are well within its ZPD. 

Note that the learning process involves “feedback loops.” That is, a player’s learning—the 

individual “output” of a single attempt—constitutes “input” for the subsequent attempt. In the 

“Piagetian” condition, this is a player-specific internal loop, and in the “Vygotskiian” condition one 

person’s output may be another person’s input on a subsequent attempt, and so on. Note also that over 

the course of a “Piagetian–Vygotskiian” run of the simulation, players might learn on one attempt from 

their own performance and on another—from the performance of a neighbor. Both sources of 

information are simultaneously available for each player to act upon. 

Computational Procedures That Implement a Theoretical Model 

An introduction to ABM would not be complete without a glimpse into the code that underlies 

the agents’ rule-based behaviors. The semantics and syntax of the NetLogo programming code is 

developed with particular attention to users’ expectations, coming from natural language (see Tisue & 

Wilensky, 2004). To the extent possible, code “primitives” (the basic commands that the program 
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“knows”) are simple nouns, verbs, quantifiers, and prepositions, such as “turtle,” “breed,” “forward,” 

“back,” “jump,” “count,” “beep,” “any?,” “nobody,” “-from,” “-at,” or “clear-graphics.” Users “teach” 

the program new words (for actions and variables) for particular models they are building. For example, 

a variable in the “I’m Game!” model is “best-score” (and so are “score,” “moves,” and “best-max-

moves,” see code example, below). Once a variable is introduced, it can take on and continuously 

change values. In this model, “best-score” is a variable that each of the players updates after each of its 

attempts to land the marble on the target line—it is a measure of their best score so far. 

We will now look closer at examples of the NetLogo code. The purpose of the following section 

is not so much to teach the reader NetLogo as much as to convey that intuitive, yet not spelled out, ideas 

regarding phenomena under inquiry become explicit when one must articulate them in simple lines of 

code.  

Diving into NetLogo code. Following is an example of the computer procedure “p-adjust.” This 

procedure name is an abbreviation of “Piaget-adjust.” It is a set of rules that instruct each virtual player 

how to operate under the “Piagetian” condition when that condition is activated from the model’s 

interface and a marble has already settled. There are also special procedures for the Vygotskiian 

condition (v-adjust), the Piagetian-Vygotskiian condition (pv-adjust), and the random condition (r-

adjust). (See, below, how the procedure begins with the infinitive form “to p-adjust” and ends with 

“end”; note that comments to the right of semicolons are ignored by the computer when it compiles, or 

“reads,” the code). 

to p-adjust 
  ;; if your score is better, that's your new best, otherwise stick with the old 
  if (score < best-score) [   ;; note that lower scores are better (closer to target line) 
    set best-score score 
    set best-max-moves max-moves 
  ] 
end 
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The agent “reading” this procedure does the following. It evaluates its score (how well it just 

performed in terms of its distance from the target line) and compares it to its best-score (the smallest 

distance it has personally achieved so far). If the score is less than the best-score, the player executes the 

following two actions that are enclosed between the brackets: (1) set best-score score: the player assigns 

to its best-score variable the value of the current score; and (2) set best-max-moves max-moves: the 

player assigns to its best-max-moves, which records how far the player threw its marble when it 

previously achieved its best-score, the value of max-moves, which records how far the player threw its 

marble on this current attempt. Note that in the case that the IF conditional it not satisfied, that is, when 

it is not the case that score < best-score, the player simply ignores the clause between the brackets. That 

means that the player does not change the values of its personal variables best-move and best-max-

moves, retaining them for the following attempt, whereupon it will again make the same comparison and 

judgment.  

What the p-adjust procedure essentially means is that the player is oblivious to all other players. 

It is only looking at its own achievement and possibly updating its “memory” accordingly. Under the 

Vygotskiian condition, however, the player looks around, and selects one of the other players in its 

vicinity. For the Vygotskiian and the Piagetian–Vygotskiian conditions, we implemented Vygotsky’s 

construct of the zone of proximal development (ZPD). If a player’s achievement on a given attempt is, 

say, 10 units away from the target, and the player sees a neighbor getting the marble only 3 units away 

from the target, the first player might imitate that neighbor’s performance, as long as the ZPD is at least 

7 units large. That is, if the ZPD is set at 5 units, then that neighbor’s performance will be out of that 

player’s ZPD (because 7 is larger than 5) and, so, the player cannot imitate it. In summary, if the 

selected neighbor player did better on this trial and this superior performance is within the player’s ZPD, 

the first player adopts both the score and the best-max-moves of that neighbor. Otherwise, the player 

records its personal values from the current run. Under the Piagetian–Vygotskiian condition, the player 



 

 23 

first checks its current score and if it’s the best so far, the player updates its values. The player then 

selects a neighbor and only takes on that player’s values if the neighbor did better than itself and the 

score is within the player’s ZPD. Finally, under the Random condition, the player can only record its 

own current values and only if they are completely on target.  

Note that when the ZPD slider (see Figure 2, p. XX) is set at the value “0,” a player cannot learn 

at all from its neighbors, because any performance that is even just 1 unit superior to its own is beyond 

the player’s learning scope. Conversely, when the ZPD slider is set at “60” (the maximum possible 

distance from the target line), the ZPD is not constituting any constraint on the prospects of imitating the 

performance of neighbors. So, any values larger than “0” will increasingly enable the imitation of a 

wider range of neighbor performance. That is, we expect that under the Vygotskiian condition, 

individual learning, and, therefore, group learning, will increase as a function of the ZPD. The notion 

that the ZPD is given to manipulation may be confusing unless the magnitude of the ZPD is interpreted 

in proportion to the task: a small ZPD indicates that participants have much learning to do in order to 

accomplish the task; a very large ZPD indicates that even the lowest-performing participants do not have 

far to go. 

[Insert Table 1 about here] 

Table 1 summarizes the four conditions, displaying both the NetLogo procedure code and its 

explanation.
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 Finally, we will focus on a line of code within the “to adjust” procedure (see Appendix A), in which 

players are “preparing” to throw the marble.9 That is, they are each assigning to their personal variable, 

max-moves, a value that is based both on their prior learning, best-max-moves, and on a random element, 

which we have underlined (see below). There are variations on this code for the Piagetian and the 

Vygotskiian conditions, which reflect differences between these conditions, but the core code is as 

follows: 

set max-moves ( best-max-moves + random-normal 0 ( error * best-score / max-dist ) ) 

The underlined code primitive random-normal takes two arguments, a mean and a standard deviation, 

and reports a value based on those arguments. In the random-normal code clause, above, the mean is 0 

and the standard deviation is a function of three variables: (1) error, which the user sets on the interface 

(see Figure 2, on p. 14); (2) best-score, which the player took from its last attempt (see in this section, 

above, the various conditions for computing this value); and (3) max-dist, which is a “global variable” 

(not personalized) and simply means the total horizontal length of the screen (how far a marble can go 

before it bounces back off the wall). Note that the standard-deviation argument takes two global 

variables, error and max-dist, and one player-specific variable, best-score. Recall that as the player 

improves, it achieves lower best-score values (the marble is stopping nearer to the target line). So the 

quotient of this player’s best-score / max-dist is decreasing with the player’s improvement. Thus, the 

standard-deviation, too, is decreasing. So what is this line of code modeling, and why did we choose to 

model this? 

Each player has its own “personalized” distribution of anticipated performance that is based on 

its prior performance. As the player improves, it calibrates its performance, so the better the player, the 

higher the calibration. In other words, the error is normally distributed around the intended target, but 

                                                
9 For the purpose of this explanation, we have simplified the original code by collapsing two sub-

conditions into a single condition and deleting an auxiliary procedure. 
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that distribution of error shrinks as the player approaches perfect performance. Think of a professional 

basket-ball player as compared to an amateur. From any given range, the professional will, on average, 

get the balls closer to the basket as compared to the amateur. But, also, the professional’s errors around 

the basket will be smaller as compared to the amateur who will be throwing the ball “all over the place.” 

Finally, note that all the above explained the procedures within a single run. To produce the 

graphs in Figure 2 (see p. 14), the procedures were run over and over, with each procedure outputting 

values that are recorded in global lists (independent of the agents) and plotted onto the graphs and, 

periodically, onto the histogram (in the “Average Distance” plot, for example, each squiggly graph line 

records runs that are each of 30 group attempts). So the graph and histogram depict the aggregation of 

results from multiple runs under each of the four experimental conditions, making comparisons 

statistically meaningful. 

Summary. We have now completed explaining the core procedures of the “I’m Game!” model, 

both in terms of the visible behaviors on the simulation interface and in terms of the code that underlies 

these rule-based behaviors. We have attempted, to the extent possible within the scope of this paper, to 

“glass-box” the model. That is, we have tried to present and explain the core procedures so as to afford 

the reader scrutiny of the model. The reader can now, hopefully, examine the code so as to judge its 

reliability (that it causes the agents to behave as we claim they behave) and its validity (that the agents’ 

behavior reflects relevant key aspect of the real behaviors “out there,” at least according to theoretical 

perspectives that we purport to be modeling). 

We will now present results from running the experiment, discuss several emergent behaviors 

observed when operating the model, and end with concluding remarks.  

Results 

In earlier sections of this paper, we have delineated our motivation to build a computer-

supported model of a socio-psychological phenomenon. Specifically, we discussed the advantage of 
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agent-based modeling (ABM) for studying complex phenomena, such as learning in situated contexts. 

Moreover, we argued that the process of building the model in and of itself constitutes an important 

factor of the learning that the model ultimately enables the researcher (“learning through modeling”). 

We then introduced the “I’m Game!” model of learning in situated contexts that we built in NetLogo 

and explained key elements of the programming code underlying the simulation. We now present results 

from running the model, including our insights from analyzing data from multiple runs under a variety 

of parameter settings. 

Experimental Results 

The “I’m Game!” model includes several parameters, such as the size of the execution error, the 

number of neighbors the player selects from, and the size of the ZPD. Therefore, the space of possible 

parameter-setting combinations for running this model is vast. Nevertheless, we will focus in this section 

on results from running the model under a specified range of settings, in each of which we gradually 

changed only one independent variable. Each specific parameter combination was run several times, and 

the values reported and displayed in graphs represent the collections of mean values from these 

iterations. Experimental results from running this simulation are as follows. 

Main effect and control. The different strategies had main effects—they resulted in consistency 

within learning conditions and differences between them. The “Random” baseline condition consistently 

produced the weakest learning. Also, learning can occur under purely “Piagetian” or purely 

“Vygotskiian” conditions, but learning under these combined conditions exceeds learning gained under 

each strategy alone. Finally, whether the Piagetian learning is greater than the Vygotskiian learning or 

vice versa depends on combinations of the settings of the parameters “Vygotskiian-neighbors,” “ZPD,” 

and "error." 

Error and learning. Under all three study conditions, we observe a strong direct relation between 

the execution error and learning (that is, an inverse relation between the error and the score; see Figure 



 

 27 

3). This relation is stronger under the Piagetian condition than under the Vygotskiian condition. This 

Piagetian advantage suggests the utility of exploration when learners must rely on personal resources 

only.  

[Insert Figure 3 about here] 

When the error is low, Vygotskiian learners are liable to arrive at a group deadlock—all 

consistently undershooting or all consistently overshooting, as though they are converging on the target 

asymptotically yet cannot improve. Such deadlock is due to players’ performance being bounded above 

by the performance of the best player in the group (and recall that the deviation is reciprocally 

dependent on the score, so a low error near the target line disallows radical change). 

[Insert Figure 4 about here] 

ZPD and learning. In the Vygotskiian mode, the larger the ZPD, the better the group average 

learning (see, in Figure 4, the diagonal “Vygotskiian” graph line representing the inverse relation 

between the ZPD value and the mean distance from the target). That is, the larger the ZPD, the more 

players could bootstrap their performance by imitating better performers in the group. Moreover, for a 

ZPD of 60, even the lowest-performing players had cognitive access to the performance of the highest-

achieving players. This interpretation is supported by the observation that under extremely small ZPD 

settings, and especially when this is compounded with low “error” settings, some players are “left 

behind,” because they initially perform poorly and then subsequently never find players within their 

narrow zone upon whom to model their performance. Note the consistent Piagetian performance. 

[Insert Figure 5 about here] 

Subgroup size and learning. In the Vygotskiian mode, and collapsed over the ZPD settings, the 

more neighbors each player observes, the faster the group learns (see Figure 5), because each player has 

a higher chance of imitating another player who is better than themselves. Note the interaction with the 

Piagetian condition that is designed so as not to be affected by the number of neighbors available for 
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imitation. 

In summary, the “I’m Game!” model is reliable in that its purported effects, based on our 

programming of the agents’ rule-based behaviors, bore out through running and analyzing the 

simulation. In particular, programming and simulating the individual agents’ behaviors gave rise to 

group patterns of behavior that, in general, can be related to “real” behaviors, as seen through the 

perspectives of constructivist and socio-constructivist theoretical frameworks.  

Conclusions and Limitations 

We have attempted to demonstrate the viability of ABM for creating an intellectual space in 

which scholars from diverse disciplines can hone, share, and debate theories of psychology. To the 

extent that the simulation appears incomplete, perhaps these shortcomings can be articulated in terms of 

the simulation itself. For instance, if you believe that the model does not begin to capture the richness of 

Piaget’s construct schema (accommodation, assimilation, specialization, equilibrium, etc.), or if you are 

concerned with the paucity of the marbles game to depict socially-mediated practices that a learner 

internalizes, according to Vygotsky’s theory, we would welcome a critique that uses the existing model 

as a basis for expressing these constructs. Also, we encourage the readers to engage, themselves, in 

simulating cognitive-developmental/social phenomena from an agent-based perspective. 

Through a case-study demonstration, we argued for ABM as a catalyst for inter-disciplinary, or, 

at the least, intra-disciplinary discourse. We set out by mentioning an anecdote of a previous study that 

was criticized, because it incorporated both Piagetian and Vygotskiian perspectives on learning. Our 

position was that when two or more perspectives can be coherently combined within a single study, such 

combination can only enrich the scope of the study. Rather than isolate these perspectives, it may be 

more rewarding to examine their potential complementarity, given the availability of powerful tools for 

bridging between these perspectives. To that extent, we have attempted to demonstrate that working in a 

programmable environment forces scholars from diverse backgrounds to couch their theories in common 
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terms. The modeling process highlights both what is shared by different theories and any critical 

differences between them. In particular, the “I’m Game!” simulation demonstrated how personal and 

interpersonal learning can be viewed and understood as reciprocal mechanisms. Both are at play.  

The new lenses of ABM, we believe, will enable education researchers to explore, articulate, and 

share intuitions we have struggled to study rigorously and express coherently: the intuitions that 

individual intelligent behavior emerges from multi-componential cognitive dynamics and, at a “level 

up,” that individuals and communities are interdependent through myriad dynamic reciprocities (e.g., 

Cole & Wertsch, 2002; Greeno, 1998, 2006; Fischer & Rose, 1999; Minsky, 1985). 

The new lenses of ABM, we believe, will enable education researchers to explore, articulate, and 

share intuitions we have struggled to study rigorously and express coherently: the intuitions that 

individual intelligent behavior emerges from multi-componential cognitive dynamics and, at a “level 

up,” that individuals and communities are interdependent through myriad dynamic reciprocities (e.g., 

Cole & Wertsch, 2002; Greeno, 1998, 2006; Fischer & Rose, 1999; Minsky, 1985). 

Finally, we have focused on ABM primarily as a methodology for applying the complementary 

cognitive and social perspectives to research on psychology theory. Yet this methodology goes beyond a 

technique for coordinating data from different levels of observation—the methodology is embedded in 

and expressive of a fundamental tenet of complexity studies. Namely, ABM-based research 

methodology bespeaks the position that scientific and social phenomena are inherently complex—for 

each observational grain size there is a lower-level grain size of activity through which the observed 

phenomena emerge. Thus, even phenomena that do not appear fundamentally social such as a single  

individual’s cognition can nevertheless be modeled as emerging from the activity of many lower-level 

cognitive elements (Blikstein, Abrahamson, & Wilensky, 2006; Blikstein, Wilensky & Hammer, 2006; 

see also Fischer & Rose, 1999; Minsky, 1985). From this perspective, agent-based models of human 

psychology are not definitive but recursive, like fractals that repeat their structure at lower and lower 
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orders of magnitude. Yet this endlessly collapsible and apparently volatile structure does not detract 

from the power of ABM. On the contrary: unlike many traditional models that are static at their level of 

description, agent-based models provide the tools for exploring microscopic–telescopic phenomenal 

structures, which develop over time, and for seeking rich explanatory coherence at multiple levels of 

observation.10 

                                                
10 “Led by a new paradigm, scientists adopt new instruments and look in new places…. It is rather as if 
the professional community had been suddenly transported to another planet where familiar objects are 
seen in a different light and are joined by unfamiliar ones as well” (Kuhn, 1962, p. 111). 



 

 31 

 

References: 

Axelrod, R. M. (1997). The complexity of cooperation: Agent-based models of competition and 

collaboration. Princeton: Princeton University Press. 

Axelrod, R., & Cohen, M. D. (1999). Harnessing complexity: Organization implications of a scientific 

frontier. New York: Free Press. 

Bar-Yam, Y. (1997). Dynamics of complex systems. Reading, MA: Addison-Wesley. 

Blikstein, P., Abrahamson, D., & Wilensky, U. (2006, June). Minsky, mind, and models: Juxtaposing 

agent-based computer simulations and clinical-interview data as a methodology for investigating 

cognitive-developmental theory. Paper presented at the annual meeting of the Jean Piaget 

Society, Baltimore, MD. 

Blikstein, P., & Wilensky, U., & Hammer, D. (2006). Modeling manifold epistemological stances with 

agent-based computer simulation. Manuscript under review. 

Bonabeau, E., Dorigo, M., Théraulaz, G. (1999). Swarm Intelligence: From natural to artificial systems. 

London: Oxford University Press.  

Cairns-Smith, A. G. (1996). Evolving the mind: On the nature of matter and the origin of consciousness. 

New York: Cambridge University Press. 

Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, MA: MIT 

Press. 

Cole, M., & Wertsch, J. V. (2002). Beyond the individual–social antinomy in discussions of Piaget and 

Vygotsky. Retrieved January 1 2002, from http://www.massey.ac.nz/~alock//virtual/colevyg.htm 

Collier, N., & Sallach, D. (2001). Repast. University of Chicago (2001).  http://repast.sourceforge.net . 



 

 32 

Diermeier, D. (with Antonio Merlo). (2000). Government turnover in parliamentary democracies. 

Journal of Economic Theory, 94, 46-79. 

Epstein, J., & Axtell, R. (1996). Growing artificial societies: MIT Press. 

Fischer, K. W., & Rose, S. P. (1999). Rulers, models, and nonlinear dynamics. In G. Savelsbergh, H. 

van der Maas, & p. van Geert, (Eds.), Nonlinear developmental processes (pp. 197 - 212). 

Amsterdam: Royal Netherlands Academy of Arts and Sciences. 

Fuson, K. C., & Abrahamson, D. (2005). Understanding ratio and proportion as an example of the 

Apprehending Zone and Conceptual-Phase problem-solving models. In J. Campbell (Ed.) 

Handbook of mathematical cognition (pp. 213 – 234). New York: Psychology Press. 

Goldenberg, P., Lewis, P., & O’Keefe, J. (1992). Dynamic representation and the development of a 

process understanding of function. In G. Harel & E. Dubinsky (Eds.) The concept of function: 

Aspects of epistemology and pedagogy (pp. 235-260).  Mathematical Association of America. 

Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 

5-26. 

Greeno, J. (2005). Learning in activity. In R. K. Sawyer (Ed.), The Cambridge Handbook of the 

Learning Sciences (pp. 79 - 96). New York: Cambridge University Press. 

Heidegger, M. (1962). Being and time (J. Macquarrie & E. Robinson, Trans.). New York: Harper & 

Row. 

Hmelo-Silver, C. E. & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex 

system from the perspective of structures, behaviors, and functions. Cognitive Science, 28, 127-

138. 



 

 33 

Holland, J. (1995). Hidden order: How adaptation builds complexity. Reading, MA: Helix Books/ 

Addison–Wesley. 

Huizinga, J. (1955). Homo ludens: A study of the play element in culture (???, Trans.). Boston, MA: 

Beacon Press. (Original work published 1944 in German) 

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: M.I.T. Press. 

Jacobson, M. J. & Wilensky, U. (2006). Complex systems in education: Scientific and educational 

importance and research challenges for the learning sciences. Journal of the Learning Sciences, 

15(1), 11-34. 

Johnson, S. (2001). Emergence: The connected lives of ants, brains, cities, and software. New York: 

Scribner. 

Kauffman, S. (1995). At home in the universe: The search for the laws of self-organization and 

complexity. Oxford: Oxford University Press. 

Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press. 

Langton, C. & Burkhardt, G. (1997). Swarm. Santa Fe Institute, Santa Fe. 

http://www.swarm.org/release.html  

Lesh, R., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on 

mathematics teaching, learning, and problem solving. Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Levin, J., & Cole, M. (2006). Simulations as mediators for distributed learning. Manuscript in 

preparation.  

Minsky, M. (1985). The society of mind. London, England: Hienemann. 



 

 34 

Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction: Psychology at 

the human-computer interface (pp. 17-38). New York: Cambridge University Press. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, Basic Books. 

Piaget, J. (1962). Play, dreams, and imitation in childhood (C. Gattegno & F. M. Hodgson, Trans.). New 

York: Norton. (Original work published 1951) 

Piaget, J. (1971). Introduction to genetic epistemology. New York: Norton. 

Resnick, M. (1994). Turtles, Termites and Traffic Jams: Explorations in Massively Parallel 

Microworlds. Cambridge, MA: MIT Press. 

Resnick, M. , & Wilensky, U. (1998). Diving into complexity: Developing probabilistic decentralized 

thinking through role-playing activities. Journal of the Learning Sciences, 7(2), 153-171. 

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model, in computer 

graphics. Paper presented at the 21(4) (SIGGRAPH '87 Conference Proceedings), pages 25-34. 

Salk, J. (1983). Anatomy of reality: Merging of intuition and reason. In R. N. Anshen (Ed.), 

Convergence. New York: Columbia University Press. 

Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human 

intelligences with intelligent technologies. Educational Researcher, 20(3), , 2-9. 

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology 1, 143 – 

186. 

Solé , R. & Goodwin, B. (2000). Signs of Life. New York: Basic Books 

Tisue, S., & Wilensky, U. (2004). NetLogo: Design and implementation of a multi-agent modeling 

environment. In Proceedings of Agent 2004, Chicago. 

http://ccl.northwestern.edu/papers/agent2004.pdf  

Troisi, A., Wong, V., and Ratner, M. (2005). An agent-based approach for modeling molecular self-



 

 35 

organization. Proceedings of the National Academy of Sciences, 102(2), 255–260. 

Tudge, J. & Rogoff, B. (1989). Peer influences on cognitive development: Piagetian and Vygotskiian 

perspectives. In M. Bornstein & J. Bruner (Eds.), Interaction in cognitive development (pp. 17 – 

40). Hillsdale, NJ: Erlbaum. 

Vygotsky, L. S. (1962).  Thought and Language.  Cambridge MA: M.I.T. Press. (Original work, 

Thinking and Speaking, published 1934) 

Vygotsky, L. S. (1978).  In M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.), Mind in 

society:  The development of higher psychological processes.  Cambridge: Harvard University 

Press. (Original work published 1935) 

Wilensky, U. (1993). Connected mathematics—Building concrete relationships with mathematical 

knowledge Unpublished manuscript, Cambridge, MA: M.I.T. 

Wilensky, U. (1997). What is normal anyway?: Therapy for epistemological anxiety. Educational 

Studies in Mathematics, 33(2), 171-202. 

Wilensky, U. (1998). NetLogo Flocking model. http://ccl.northwestern.edu/netlogo/models/Flocking. 

Center for Connected Learning and Computer-Based Modeling, Northwestern University, 

Evanston, IL. 

Wilensky, U. (1999a). NetLogo. The Center for Connected Learning and Computer-Based Modeling, 

Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/  

Wilensky, U. (1999b). GasLab: An extensible modeling toolkit for exploring micro- and macro- views 

of gases. In N. Roberts, W. Feurzeig, & B. Hunter (Eds.), Computer modeling and simulation in 

science education. Berlin: Springer Verlag. 

Wilensky, U. (2000). Modeling emergent phenomena with StarLogoT. @CONCORD.org, (4) 1. 



 

 36 

Wilensky, U. (2001, April). Emergent entities and emergent processes: Constructing emergence 

through multi-agent programming. Paper presented at the annual meeting of the American 

Educational Research Association, Seattle, WA.  

Wilensky, U. (2002). Modeling nature' s emergent patterns with multi-agent languages. Proceedings of 

EuroLogo 2002. Linz, Austria. 

Wilensky, U., & Abrahamson, D. (2006, April). Is a disease like a lottery?: Classroom networked 

technology that enables student reasoning about complexity. Paper presented at the annual 

meeting of the American Educational Research Association, San Francisco, CA. 

Wilensky, U., & Reisman, K. (1998). Learning biology through constructing and testing computational 

theories--An embodied modeling approach. Y. Bar-Yam, Second International Conference on Complex 

Systems, Nashua, NH, New England Complex Systems Institute.Wilensky, U., & Reisman, K. (2006). 

Thinking like a wolf, a sheep or a firefly: Learning biology through constructing and testing 

computational theories. Cognition & Instruction, 24(2), 171-209. 

http://ccl.northwestern.edu/papers/bio/long/.Wilensky, U., & Resnick, M. (1999). Thinking in levels: A 

dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 

8(1), 3-19. 

Wilensky, U., & Stroup, W. (2003, April) Embedded complementarity of object-based and aggregate 

reasoning in students developing understanding of dynamic systems. Paper presented at the 

annual meeting of the American Educational Research Association, Chicago, IL. 

Wilensky, U., & Papert, S. (2006). Restructurations: Reformulations of knowledge disciplines through 

new representational forms. (Manuscript in preparation) 

Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media, Inc. 

 



 

 37 

 

Appendix A—NetLogo Code for the “I’m Game!” Model 

Note: characters appearing to the right of two semicolons (“;;”) are comments on the code that the 
modeler wrote to help colleagues and fellow researcher make sense both of specific procedures and how 
they fit into the super-procedures. For explanations of the code language, see the NetLogo tutorial that 
comes with the free download of NetLogo at http://ccl.northwestern.edu/netlogo/. For an explanation of 
several key elements of this model’s procedures, see the section Computational Procedures That 
Implement a Theoretical Model. 

 
globals [ target   ;; the target line in the middle 
          max-dist   ;; the maximum distance to the wall 
          ticks-left   ;; the number of runs left of the current strategy 
          pavg vavg pvavg ravg           ;; lists of each run's distance halfway through ticks-left 
                                         ;; ex. pavg = [ 2 3 17 ... ] 
                                         ;; this metric allows for comparison between strategies 
        ] 
turtles-own [ max-moves      ;; the max-moves of the current throw 
              best-max-moves ;; the best throw of the agent (or, if “no memory,” the current throw) 
              moves-left    ;; the number of moves left until the ball comes to rest 
              score         ;; the current score (how far from target line... lower is better) 
              best-score    ;; best score (or, if no memory, current throw) 
            ] 
 
to setup 
  ca 
  set-default-shape turtles "circle-arrow" 
  crt number-of-players 
  ask turtles [ set color color + 0.1 ] ;; to make trails a little easier 
  set pavg [0] set vavg [0] set pvavg [0] set ravg [0] 
  ;; initialized with zeros so i can use mean from the start 
  rerun 
end 
 
to rerun 
  cp 
  ;; random strategies lets you keep the simulation running picking from the available strategies 
  ;;    at random 
  if ( randomize-strategy-on-setup? ) [ 
      let new-strategy random 4 
      if ( new-strategy = 3 ) [ set strategy "Random" ]         
      if ( new-strategy = 2 ) [ set strategy "Piagetian" ]  
      if ( new-strategy = 1 ) [ set strategy "Vygotskiian" ]  
      if ( new-strategy = 0 ) [ set strategy "P-V" ]  
  ] 
  set ticks-left 30 
  set max-dist ( screen-size-x ) 
  setup-plots 
  setup-target 
  setup-turtles  
  display  
end 
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to setup-plots 
  set-current-plot "avg distance" 
  set-plot-y-range 0 screen-edge-x  ;; most will fall within this range (all after a couple of steps) 
  set-current-plot-pen strategy ppu plotxy -1 0 ppd 
  
  set-current-plot "strategy avgs" 
  set-current-plot-pen "Random" plot-pen-reset plotxy 0 precision mean ravg 2 
  set-current-plot-pen "Piagetian" plot-pen-reset plotxy 1 precision mean pavg 2 
  set-current-plot-pen "Vygotskiian" plot-pen-reset plotxy 2 precision mean vavg 2 
  set-current-plot-pen "P-V" plot-pen-reset plotxy 3 precision mean pvavg 2 
end 
 
to-report get-strategy-color 
  ifelse ( strategy = "Random" ) 
  [ report green ] 
  [ ifelse ( strategy = "Piagetian" ) 
    [ report blue ] 
    [ ifelse ( strategy = "Vygotskiian" ) 
      [ report red ] 
      [ report grey ] 
    ] 
  ] 
end 
 
to setup-target 
  ;; the target is the line in the center of the screen, 2 patches thick 
  set target patches with [ abs ( pxcor ) < 1 ] 
  ask target [ set pcolor get-strategy-color ] 
end 
 
to setup-turtles 
  ask turtles 
  [ 
    ;; spread out the turtles evenly 
    set size ( screen-size-y / count turtles ) 
    setxy ( - screen-edge-x ) round ((who * screen-size-y / count turtles)) + 2 
 
 
    set score 100000 
    set best-score score 
    set heading 90 
 
    ;; their max-moves are randomly distributed over the length of the playing field 
    set max-moves random max-dist 
  ] 
end 
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to go 
  ;; the score is their distance from the target 
  ask turtles [ set score evaluate-score ]  ;; the score is the distance from the target line 
  ask turtles [ adjust ] ;; act according to the strategy, e.g,. in Vygotskiian, you compare your scores to a neighbor and 
possibly update your score 
   
  reset 
   
  ;; move all the turtles forward to their max-moves spot. 
  ;; we can't just say "fd max-moves" because we want them to bounce off the wall  
  ;; + leave a dissipating trail 
  ask turtles [ set moves-left limit-legal-distance max-moves ] 
  let moving-turtles turtles with [ moves-left > 0 ] 
  while [ any? moving-turtles ] [  
    set moving-turtles turtles with [ moves-left > 0 ] 
    ask moving-turtles [  
      move-x  
      if (trails?) [ stamp (color - 5) + ( 10 * ( max-moves - moves-left )  / max-moves ) ]  
    ] 
  ]   
   
  do-plots 
   
  if (ticks-left < 0) and limited-run? [ display stop ] 
  if (ticks-left < 0) and not limited-run? [ display rerun ]   
  set ticks-left ticks-left - 1 
end 
 
 
to move-x  
    set moves-left moves-left - 1  
    fd 1  
    if ( pxcor >= (screen-edge-x - 1) ) 
      [ set heading 270 fd 2 ]  
end 
 
to-report evaluate-score 
  report ( distancexy-nowrap 0 ycor ) 
end 
 
to-report limit-legal-distance [ val ] 
  report ( min ( list ( max-dist - 1 ) max ( list 0 val ) ) ) 
end 
 
to do-plots 
  set-current-plot "avg distance" 
  let curr-mean mean values-from turtles [ evaluate-score ] 
  plot curr-mean 
  if (ticks-left = 15) [  
    if strategy = "Piagetian" [ set pavg fput round curr-mean pavg ] 
    if strategy = "Vygotskiian" [ set vavg fput round curr-mean vavg ] 
    if strategy = "P-V" [ set pvavg fput round curr-mean pvavg ] 
    if strategy = "Random" [ set ravg fput round curr-mean ravg ] 
  ] 
end   
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to reset 
  cp 
  setup-target 
  ask turtles [ set heading 90 set xcor ( - screen-edge-x ) ] 
  display 
end 
 
to adjust 
    if strategy = "Random" [  
        r-adjust  
        set max-moves best-max-moves 
        stop 
    ] 
    if strategy = "Piagetian" [ p-adjust ]  
    if strategy = "Vygotskiian" [ v-adjust ]   
    if strategy = "P-V" [ pv-adjust ] 
     
   if strategy = "Vygotskiian" 
   [ 
     set max-moves limit-legal-distance  
         ( best-max-moves +  ( random-normal 0 ( error * best-score / max-dist ) ) ) 
     stop 
   ] 
   
   ifelse ( xcor > 0 ) [ 
      set max-moves limit-legal-distance  
        ( best-max-moves +  (- abs random-normal 0 ( error * best-score / max-dist ) ) ) 
    ] [ 
      set max-moves limit-legal-distance  
        ( best-max-moves + (abs random-normal 0 ( error * best-score / max-dist ) ) ) 
    ] 
end 
 
to p-adjust 
  ;; if your score is better, that's your new best, otherwise stick with the old 
  if (score < best-score) [ 
    set best-score score 
    set best-max-moves max-moves 
  ] 
end 
 
to v-adjust 
  let fellow nobody 
  while [ fellow = nobody or fellow = self ]   

[ set fellow turtle (who + ( - (#-Vygotskiian-neighbors / 2) ) + random (1 + #-Vygotskiian-neighbors ) ) ] 
  ;; look randomly to one of your neighbors 
     
  ;; if the score is better and it is within your ZPD, use their max-moves. 
  ifelse (best-score > best-score-of fellow) and (best-score - ZPD <= best-score-of fellow) 
  [ 
    set best-score best-score-of fellow   
    set best-max-moves best-max-moves-of fellow 
  ] 
  [ 
    set best-score score 
    set best-max-moves max-moves 
  ] 
end 
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to pv-adjust   
  let fellow nobody 
  while [ fellow = nobody or fellow = self ]  [ set fellow turtle (who + ( - (#-Vygotskiian-neighbors / 2) ) + random (1 + #-
Vygotskiian-neighbors ) ) ] 
  ;; look randomly to one of your neighbors 
 
  ;; maximize your own score and... 
  if ( score < best-score ) 
  [ 
    set best-score score 
    set best-max-moves max-moves 
  ] 
  ;; check it against your neighbor's score 
  if (best-score > best-score-of fellow) and (best-score - ZPD <= best-score-of fellow) 
  [ 
    set best-score best-score-of fellow 
    set best-max-moves best-max-moves-of fellow 
  ] 
end 
 
to r-adjust 
  ;; random strategy changes max-moves to a random number x if it's not at the wall 
  ;; where 0 < x < max-dist 
  ;; if it is at the target, it stops changing. 
  ifelse ( (abs pxcor) > 0 ) 
  [ 
  ; ifelse (smart-random?) 
  ;  [ set best-max-moves limit-legal-distance max-moves + random-normal 0 error ] 
    ;[ 
     set best-max-moves ( random max-dist )  
     ;] 
  ] [ 
    set best-max-moves ( max-dist / 2 ) - 1  
  ] 
end 
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Table 1. 
NetLogo Agent Procedures for the Experimental Conditions and Explanations of These Procedures 

Procedure Explanation 
 

“Piagetian” 
to p-adjust 
  if (score < best-score) [ 
    set best-score score 
    set best-max-moves max-moves 
  ] 
end 

 

 
If you have performed better than in the 
past, record both how well you did now 
and how far you threw the marble.   

“Vygotskiian” 
to v-adjust 

let fellow nobody 
while [ (fellow = nobody) or (fellow = self)]   

[ set fellow turtle (who + ( - (#-Vygotskiian-neighbors / 2) )  
   + random (1 + #-Vygotskiian-neighbors ) )  

 ifelse (best-score-of fellow < best-score) and  
              (best-score - best-score-of fellow <= ZPD ) 

[ 
set best-score best-score-of fellow   
set best-max-moves best-max-moves-of fellow 

] 
[ 

set best-score score 
set best-max-moves max-moves 

] 
end 

 

If a selected neighbor performed better 
than you and this advantage is within 
your ZPD, record both how well the 
neighbor did and how far the neighbor 
threw the marble. Otherwise, record 
your own values, regardless of how 
they compare to your own previous 
attempts. 

“Piagetian–Vygotskiian” 
to pv-adjust   

let fellow nobody 
while (fellow = nobody) or (fellow = self)] 
             [ set fellow turtle (who + ( - (#-Vygotskiian-neighbors / 2) )  
                 + random (1 + #-Vygotskiian-neighbors ) ) ] 
if ( score < best-score ) 
  [ 
    set best-score score 
    set best-max-moves max-moves 
  ] 
if ( best-score > best-score-of fellow ) 
  [ 
    set best-score best-score-of fellow 
    set best-max-moves best-max-moves-of fellow 
  ] 

end 
 

If you have performed better than in the 
past, record both how well you did now 
and how far you threw the marble. 
Then, if a selected neighbor performed 
better than you and this advantage is 
within your ZPD, record both how well 
the neighbor did and how far the 
neighbor threw the marble 

“Random” 
to r-adjust 

if ( (abs pxcor) > 0 ) 
  [ 
    set best-max-moves ( max-dist / 2 ) - 1  
  ] 

end 
 

If you have performed perfectly, record 
how far your threw the marble. 
Otherwise, don’t record anything. 



 

 44 

List of Figures 

Figure 1. Snapshots from successive experimental runs of the NetLogo “I’m Game!” simulation 

of play-based “Piagetian” and/or “Vygotskiian” learning: Personal and interpersonal learning are 

reciprocal. 

Figure 2. Interface of the NetLogo “I’m Game!” interactive simulation of learning. Under these 

particular experimental conditions, and aggregated over repeated runs, the group mean performance 

(distance from target) is ranked “Piagetian–Vygotskiian,” “Piagetian,” “Vygotskiian,” and “Random.” 

Figure 3. Increasing players’ perception/execution “error” allows players to experience 

improved performance. The effect is more pronounced for the Piagetian (and hence the Piagetian–

Vygotskiian) condition than for the Vygotskiian condition. In these experimental runs, there were 20 

agents, the ZPD was set at 15, and the #-Vygotskiian-neighbors variable was at 4 (and 10 iterations were 

run per setting). 

Figure 4. Broadening the ZPD setting increases learning opportunities and, thus, decreases the 

group mean score in the Vygotskiian and Piagetian–Vygotskiian experimental modes but does not affect 

the Random or Piagetian modes. In these experimental runs, there were 20 agents, the error was at 4, and 

‘#-Vygotskiian-neighbors’ was at 4 (and 30 iterations were run per setting). 

Figure 5. Increasing the number of each player’s subgroup enhances individuals’ chances to 

learn through imitation, under the Vygotskiian and Piagetian-Vygotskiian (but not Random or Piagetian) 

conditions. Therefore, the group mean score improves, too. In these experimental runs, there were 20 

agents, the ZPD was set at 15, and the error variable was set at 3 (80 iterations per setting). 

 



 

 45 

 

 

Figure 1. Snapshots from successive experimental runs of the NetLogo “I’m Game!” simulation of play-
based “Piagetian” and/or “Vygotskiian” learning: Personal and interpersonal learning are reciprocal. 
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Figure 2. Interface of the NetLogo “I’m Game!” interactive simulation of learning. Under these 
particular experimental conditions, and aggregated over repeated runs, the group mean performance 
(distance from target) is ranked “Piagetian–Vygotskiian,” “Piagetian,” “Vygotskiian,” and “Random.” 
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Figure 3. Increasing players’ perception/execution “error” allows players to experience improved 
performance. The effect is more pronounced for the Piagetian (and hence the Piagetian–Vygotskiian) 

condition than for the Vygotskiian condition. In these experimental runs, there were 20 agents, the ZPD 
was set at 15, and the #-Vygotskiian-neighbors variable was at 4 (and 10 iterations were run per setting). 
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Figure 4. Broadening the ZPD setting increases learning opportunities and, thus, decreases the group 
mean score in the Vygotskiian and Piagetian–Vygotskiian experimental modes but does not affect the 

Random or Piagetian modes. In these experimental runs, there were 20 agents, the error was at 4, and ‘#-
Vygotskiian-neighbors’ was at 4 (and 30 iterations were run per setting). 
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Figure 5. Increasing the number of each player’s subgroup enhances individuals’ chances to learn 
through imitation, under the Vygotskiian and Piagetian-Vygotskiian (but not Random or Piagetian) 

conditions. Therefore, the group mean score improves, too. In these experimental runs, there were 20 
agents, the ZPD was set at 15, and the error variable was set at 3 (80 iterations per setting). 

 
 


