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Abstmd. We have adapted the dimerization algorithm for enumerating self-avoiding walks 
to exploit the parallelism of the Connection Machine System”. By this approach we have 
extended the series for the number of self-avoiding walks on the 2D square lattice by five 
terms. These data may permit more accurate estimates of critical properties. 

The enumeration of self-avoiding walks in an efficient manner is a problem of continuing 
interest. A standard approach for enumeration is based on a ‘backtracking’ algorithm 
[l]  in which all n-step SAWS are used as a base upon which all ( n +  1)-step SAWS are 
built (an example of Fortran code for enumeration can be found in [Z]). A useful 
alternative approach is the ‘dimerization’ algorithm, first developed by Alexandrowicz 
[3] in the context of Monte Carlo simulations, and introduced by Torrie and Whittington 
for enumeration [4] and then recently rediscovered by Wang [ 5 ] .  In dimerization, one 
constructs all SAWS of length n by the backtracking method, for example, and then 
constructs all  SAW^ of length 2n  by joining together all n-step pairs of SAWS which do 
not lead to additional self-intersections. This method was used very recently by Guttman 
and Wang [6] to extend the enumeration of  SAW^ on the square lattice by two terms 
to n = 29. In this letter, we report the further extension of the square lattice series for 
the number of SAWS by five terms up to n = 34. Results for the mean-square end-to-end 
distance, and also series for other lattices will be discussed in a future publication. 

Our calculations were performed on a Thinking Machines CM-2 massively parallel 
supercomputer$. Guttman and Wang report that their calculations (performed on a 
Masscomp 5700) took somewhat less than 700 hours for the square lattice. Taking this 
time to refer to the calculation of the data for n = 28 and n = 29 only, our calculation 
for the number of SAWS took approximately 2 hours. We estimate that the inclusion 
of the endpoint distances (performed by Guttman and Wang) would increase the 
computation time to approximately 6 hours for the equivalent calculation. To extend 
the series for the number of SAWS by 5 more terms, up to n = 34, required another 
-100 hours of calculation. 

Undoubtedly, the most significant factor contributing to the relative speed of our 
enumeration program is the exploitation of the massively parallel architecture of the 
CM-2. To this end, we parallelized the dimerization algorithm. 

0 Actually, several CMs of various sires (e.g. 4k, 8k, 16k processors) were used. All time calculations in this 
paper arc normalized to a &It CM. 
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The CM-2 is a massively parallel supercomputer with a maximum of 64k physical 
processors. Communication to the CM is performed through a front-end computer (in 
this case a SUN workstation) which broadcasts instructions to all 64k processors 
simultaneously. Computations are done in a data-parallel manner by loading each 
processor with a different element of data and then having all the processors execute 
the samet instructions on their own data. The number of processors can be made to 
appear larger than 64k by dividing up each physical processor into U virtual processorst 
where U is called the up-ratio. The CM supports CM-Fortran, C*, and *Lisp, parallel 
extensions of the corresponding scalar languages. Our program for enumerating  SAW^ 

is written in *Lisp. A further substantial increase in the speed of our program can 
likely be achieved if the program is rewritten in a lower-level language. 

The algorithm consists of the following steps. To enumerate  SAW^ of length n, first 
a ‘split’ point, m < n, is selected. Then all SAWS of length m, generated by a parallelized 
version of the backtracking method, are loaded into the CM, one SAW per processor$. 
In this parallel version of backtracking, each processor independently constructs the 
next step and then branches to three (or fewer) new processors, corresponding to the 
allowable directions for the next step, until the CM is filled with complete walks. This 
version of backtracking takes very little time to fill the CM. After the processors are 
filled with SAWS of length m, the front end generates a single SAW of length n - m. This 
SAW is then broadcast simultaneously to each processor. Each processor, in parallel, 
performs an intersection check between its two segments ofthe n step walk to determine 
if indeed a valid SAW has been formed. The front end steps serially through all  SAW^ 

of length n - m. The simultaneous intersection check with the m-step  SAW^ already 
stored in the CM memory permits a substantial speedup over a scalar computation. 

In the serial version of the dimerization process, m is in principle arbitrary, but 
we expect the greatest efficiency when m is close to n/2. However, in the parallel 
version of dimerization, we expect greater efficiency when m is large. This is due to 
two factors: (1) the parallel backtracking method fills the CM memory quickly, and 
(2) having more walks in the CM memory increases the speed of the computation 
since the check for intersection of one walk on the front end with all walks in memory 
requires a fixed amount of time. Essentially, the execution time of the algorithm is 
proportional to E._,,,. We therefore choose m to be as large as will fit in the CM 
memory. The number of  SAW^ that fit in memory is determined by the number of 
physical processors (in our case 64k), the amount of memory on each processor (in 
our case 256k), and the upratio. For example the calculation for cZ9 was done with 
m = 17. A more detailed discussion of the algorithmic trade-offs is beyond the scope 
of this letter and will be discussed elsewhere. To manage the computation over time, 
we have also divided the computation into sub-tasks, each sub-task11 consisting of the 
computation of the continutations of stored SAWS of length p, for some small p. 

t The latest version of the Connection Machine, the CM5,’allows different processors to execute different 
instructions. 
t: Virtual processors are an abstraction in a data-parallel language. that is transparent to the user and provides 
a view of physical processors in software that enables them to be seen as up-ratio times the number of 
physical processors. ?bey can be implemented by dividing up the memory of each pmces~or by the up-ratio 
and then looping over the different data elemem in each sub-division. 
S Actually, symmetry considerations allow one to load only a quarter of the SAWS, but that will be ignored 
in the following. 
11 ?be actual vpratio was chosen with respect to the number of SAWS that were needed to be stored by each 
sub-tssk. For example for an 8k machine we used a upratio of 16, with 71 sub-tasks. 
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The new terms for the number of SAW% are 

c,, = 16 741 957 935 348 

c3,=44673816630956 

= 119 034 997 913 020 

cj3 = 317 406 598 267 076 

e,, = 845 279 074 648 708. 

As a check of our results, we verified the previously published data of Guttmann 
and Wang, as well as reproducing our results by using two different split points for 
dimerization. 

Owing to the length of the series for the number of SAWS, a rudimentary, although 
biased, analysis method [7] yields an estimate for the connective constant which is 
comparable to that obtained by the more sophisticated analysis methods of Guttmann 
[8] based on the series with five fewer terms. We assume that 

(1) 

where c$~ > 0, and where the correction terms are assumed to arise from lower order 
confluent singularities. Now using the conjectured value [9] of r=g, we then analyse 
the reduced series d. = cn/n7-', for which we focus on estimating the value of the 
connective constant p. 

For the analysis of the reduced series, we form the ratios of alternating successive 
terms r. = (dn+2/d.)1'2. We use the alternating terms in forming the ratio to reduce the 
magnitude of the even-odd oscillations, characteristic of a loose-packed lattice, in 
subsequent extrapolations. According to the hypothesized asymptotic form of the series 
d., the ratios r. should vary as 

c.-An'-' p ( l+B, /n~I+B, /n"+ ... ) 

r.-p(l+C,/n"l+. .  .) (2) 
as n + 00, with ai = 1 + b( strictly greater than unity. To estimate the value of p, we 
now form the extrapolants 

s. = [norn - ( n  -2)"r.-,]/[nm - ( n  -2)"l (3) 

that is, the intercept at I /n"  = 0 of the straight line that passes through r. and rn-z 
when the data is plotted against l /n" (figure l (o) ) .  These points should converge to 
the value of p as n +m. In this plot, the averages of two successive terms, s"'n = 
1/2(sn+sn-,) are also shown. In our extrapolation, we have found that the empirical 
choice a = 2 gives the most rapid convergence of the extrapolants to the asymptotic 
limit. Already at this initial analysis stage, we estimate p to be close to 2.638 15 with 
a subjective uncertainty, based on visually extrapolating the envelope of the oscillations 
in s., of 0.000 01 or less. Owing to the even-odd oscillations which still persist in s"'n, 
we perform two additional successive averages of consecutive terms in s'l 'n, thereby 
forming d 2 ) n  and s("n. The latter sequence has virtually no even-odd oscillations and 
this aspect facilitates additional extrapolations (figure 1( b ) ) .  

If r. actually has the form r. - p ( l +  C,/n2+C2/n3), as suggested by the analysis 
of d"n, then the sequence d3)n will approach its limiting value as l /n3. Extrapolating 
d 3 ) n  in this way, we find that the estimates for the intercept at I / n 3 = 0  lie on a 
relatively straight line (figure 2). The linear extrapolation of the last three pairs of 
successive data points are all within 0.000 0002 of our estimate p = 2.638 1589. This 
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Figure 2. Extrapolation of d’ln against l / n 3  (U), and a second extrapolation versus I /n3 
(U). The square bracket and the brace indicate, respectively, the estimated range of value 
for @ given by Guttmann and Wang and by Guttmann and Enting. 
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would be a reasonable estimate of the uncertainty in the value of p, if our analysis is 
based on correct assumptions for the form of the various corrections to the asymptotic 
behaviour of the series. Our estimate for j~ is consistent with the value p =  
2.638 1563*0.000 0034, quoted by Guttmann and Wang [a], and also with the value 
p = 2.638 1584* 0.000 0014 quoted by Guttmann and Enting [ 101 based on analysis of 
a 56-term series for the number of self-avoiding polygons, determined by an algorithm 
specialized specific to the polygon problem. 

in  cuiiciiisiori, we have deveioped a new aigoriihm based on paraiieiizing the 
dimerization method to extend the series for the number of self-avoiding walks on the 
square lattice to 34 terms. These series appear to be long enough to give very accurate 
estimates for critical parameters with only rudimentary analysis methods. In future 
work, we will report on extended series for other lattices, as well as the results of a 
more thorough analysis. 

The authors wish to acknowledge Alex Kushkuley, Roger Frye, and Mario Bourgoin 
for helpful discussions regarding the enumeration algorithm on the CM. SR thanks 
the ARO and NSF for partial support of this work. 

Norc added. After this work was complekd we received a preprint by Mertens and Lautenbachcr (to appear 
in 1. Star. Phys.) in which they describe a method for enumerating lattice animals by distributing the 
enumeration process over several workstations. 

Connection Machine is a registered trademark of Thinking Machines Corporation. CM-2 and CM an 
trademarks of Thinking Machines Corporation. CM-Fortran, 'Lisp, and C' are trademarks of Thinking 
Machines Corporation. Sun is a trademark of Sun Microsystems Inc. 
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