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1.0. Introduction

There s a sharp contrast between the picture ofthe field of biology as studied in school settings and the picture
that emerges from the practice of current biology research. While the two pictures are linked by similar content
and the objects of study are recognizably the same, the processes mvolved in the two activities are quite
different.

In school settings, typical mstruction emphasizes the memorization of classification schemas and established
theories. In middle school, classification may take the form of learning the names of the bones of the body, the
names and shapes of different plant leaves or the phyla in the animal kingdom. In high school and early
undergraduate studies, the content broadens to include unseen phenomena such as parts of the cell or types of
protozoa, but the processes of memorizing classifications remains essentially the same. Even in cases where the
theories are not yet established, such as the extinction of the dinosaurs, the alternative theories are presented as
competing stories to be memorized. And even when students are exposed to research techniques in laboratory
work, the emphasis is on following a prescribed procedure rather than reasoning from the evidence gathered n
the procedure.

This picture contrasts sharply with the picture that emerges from the recent biology research literature. In this
picture, the participants are active theorizers. They devise new evidence gathering methods to test their theories.
Instead of accepting classifications as given, they are seen as provisional theories that are constantly reassessed
and reconstructed m light of the dialogue between theory and evidence. They reason both forwards, by
constructing theories that are consistent with the known evidence and backwards by deducing consequences of
theories and searching for confirming/disconfirming evidence. In constructing or assessing an account of a
biological phenomenon, they focus on the plausibility of the mechanism proposed — can it achieve the task
assigned it n a biologically feasible manner? This assessment of the mechanism often involves reasoning across a
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range of levels — they ask: is the mechanism constrained by the structure at the molecular, the cellular, the
organismic and/or the ecological level?

The contrast between the processes in which these two communities are engaged leads biology students to form
a misleading picture of the biological research enterprise. Students form beliefs that biology is a discipline in
which observation and classification dominate and reasoning about theories is rare. Furthermore, they believe
that learning biology consists of absorbing the theories of experts and that constructing and testing their own
theories is out of reach. In this paper, we present an approach that attempts to narrow the gap between school
biology and research biology. The approach centers on the use of mnovative computer modeling tools that
enable students to learn biology through processes of constructing and testing theories.

In recent years, several educational research projects (Jackson et al, 1996; Ogborn, 1999; Roberts & Barclay,
1988) have employed computer modeling tools in science instruction. The approach taken heren differs from
these approaches i its use of object-based modeling languages that enable students to model biological elements
at the level of the individual (e.g., individual wolf/sheep) as opposed to aggregate (differential-equation based)
modeling languages that model at the level of the population (wolf/sheep populations). This technical advance in
modeling languages enables students to employ their knowledge of the behavior of individual organisms (or
molecules, cells, genes..) in the construction of theories about the behavior of populations of organisms. They
embody their theories of individual behavior in a computational agent. This ability to model individual behavior
enables students to employ their personal experience with sensing and locomoting in the world as mitial elements
mn their models of other organisms.

In previous work, the authors and other object-based modelng projects (Repenning, 1994; Resnick, 1994;
Smith et al, 1994; Wilensky, 1995; 1999; Wilensky & Resnick, 1999) have described the "embodied modeling”
approach in a broad imter-disciplinary context. In this paper, we explore the use of this approach, specifically, in
biology instruction.

We begin, in the following section, by describing our embodied approach to biological modeling and the object-
based parallel modeling language, StarLogoT, n which the models are constructed. In section three, we illustrate
this approach by developing embodied models of predator-prey population fluctuations. In section four, we
develop a computational model of synchronously flashing fireflies (these species of fireflies are prevalent n the far
east, especially Thailand) to frame a discussion of the student modeling process and the relationship of this
process to modeling within science. Finally, in our concluding remarks we summarize the major points of the
paper. The student modelers described below were participants in the "Connected Mathematics" (Wilensky,
1993; 1995), the ConnectedScience (Wilensky, 1999) and the "Making sense of Complex Phenomena"
(MSCP) (Wilensky, 1997; 1999) projects housed at the Center for Connected Learning & Computer-Based
Modeling (CCL) at Tufts University. In these projects, students learn about complex systems through
construction of object-based parallel models of these systems. The goal of the MSCP project is to construct
computational toolkits that enable students to construct models of complex systems and to study students
engaged in using these toolkits to model complex systems and to make sense of their behavioral dynamics.
Research has documented the difficulties people have in making sense of emergent phenomena, global patterns
that arise from distributed interactions, central to the study of complex systems. We have labeled the
constellation of difficulties n understanding emergent phenomena and constructing distributed explanations of
such phenomena the deterministic/centralized mindset (Resnick & Wilensky, 1993; Wilensky & Resnick, 1995,
1999; Resnick, 1996). In the CCL projects, we have worked with a wide variety of students, rangng from
middle school students to graduate student researchers as well as both pre-service and in-service teachers on
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moving beyond this mindset to a richer understanding of the dynamics of complex systems. Major research sites
mclude two urban Boston high schools. Students from these schools participated n the project as part of their
classroom work. Undergraduates and pre-service teachers participated in the context of teacher education
courses at Tufts University. Some students participated through mformal contexts, pursung modeling
mvestigations in after-school settings or at the laboratory, housed at the project site. In the classroom context,
students, typically, were involved in an extended classroom modeling project led by the classroom teacher and
assisted by project researchers. The role of the researchers was to document student work through videotaping
and field notes and to support students and teachers in the use of project materials and modeling languages. Such
support included the dissemination of interesting cases to be potential sources of models, bringing in books and
web sites that might be useful to the modelers. Project researchers also engaged students in structured activities
(including participatory simulations not involving the computer (Resnick & Wilensky, 1998)) that would foster
reflection on the concept of emergence. They also provided support to students and teachers on the syntax of the
modeling language. The computational models described i this paper were built in an object-based parallel
modeling language called StarLogoT (Resnick, 1994, 1996; Wilensky, 1995, 1999). In the next section, we
describe the workings of StarlLogoT and its advantages for modeling biological phenomena.

2.0. The StarLogoT Modeling Language

StarLogoT is a general-purpose (domain independent) modeling language that facilitates the modeling of complex
systems. It works by providing the modeler with a framework to represent or "embody" the basic elements —
the smallest constituents — of a system, and then provides a way to simulate the interactions between these
elements. With StarLogoT, students write rules for hundreds or thousands of these basic elements specifying
how they should behave and mteract with one another. These individual elements are referred to as ‘turtles’.
(StarLogoT owes the ‘turtle” object to the Logo computer language). Turtles are situated on a two dimensional
grid on which they can move around. Each cell on the grid is called a ‘patch’, and patches may also execute
mstructions and interact with turtles and other patches. Some typical commands for a turtle are, to move m a
given direction, to change color, to set a variable according to some value, to "hatch" new turtles, or to look at
the properties (variables) of other turtles. Turtles can also generate random values, so that they can, for example,
execute a sequence of commands with a fixed probability. Patches can execute similar commands, though they
cannot change location. The wide range of commands executable by turtles and patches makes it possible to use
them to represent many different systems. For example, turtles can be made to represent molecules, cells, or
individual organisms, while patches represent the medium (whatever it may be) in which they mteract. Time in
StarLogoT is represented as a discrete sequence of ‘clock-ticks’. At each clock=tick, each turtle and patch is
called upon to execute the rules that have been written for it.

The modeling approach we describe — mstantiating the individual elements of a system and simulating their
nteractions — is not unique to StarLogoT. Such models have been used across a wide variety of domains and
have been referred to by several different labels, including: object-based parallel models (Wilensky, 1995;
1997), agent-based models (Beer, 1990; Maes, 1990; Repenning, 1994; Epstein & Axtell, 1996), and
mdividual-based models (Huston, 1988; Judson, 1994). These ‘new wave’ modeling approaches have
transformed biology research practice enabling researchers to model increasingly complex multi-leveled
biological systems (Forrest, 1989; Langton, 1993; Keen & Spain, 1990; Taylor et al, 1989). For the remainder
of this paper, we will employ the term "embodied modeling" to refer to this general approach. While the term,
"object-based parallel modeling", which we have used in the past is, perhaps, a more accurate description of the
technical workings of StarLogoT, the "embodied modeling" label more closely matches the experience of a
biology modeler who is actively engaged in understanding and embodying the behavior of individual biological
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elements.

In the following two sections of the paper, we will illustrate the embodied modeling approach in biology with two
examples of modeling biological phenomena. We intend these examples to illustrate both how such an approach
can 1) facilitate the creation of predictive multi-level models in biology and 2) enable biology students to create
more powerful explanations of and deepen their understanding of biological phenomena.

3.0. Modeling Predator-Prey Population Dynamics

The dynamics of mteracting populations of predators and therr prey have long been a topic of mterest in
population biology. Comparisons of a number of case studies have revealed similar dynamics between such
populations, regardless of the specific species under study and the details of their mteractions. (Elton, 1966).
Notably, when the sizes of the predator and prey populations are compared over many generations, we tend to
find regular oscillations in these sizes which are out of phase; where one increases, the other tends to decline, and
vice-versa (figure 1). In this section, we will present embodied models, developed by students, that reproduce
these dynamics.
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Figure 1. Fluctuations ofthe sizes of predatory lynx and prey hare populations in Northern Canada ffom 1845-1935 (Purves et al, 1992).

3.1. The embodied approach

Using embodied tools, such as StarLogoT, students, typically, first approach the modeling problem by asking what kinds of
rules an individual predator or individual prey must follow so that, when allowed to interact in large numbers, populations of
such individuals will exhibit population oscillations. It may seemto readers that one would need to be highly familiar with the
phenomenon being modeled and with current theories in order to develop a working set of rules, but our experience indicates
otherwise. In the Making Sense of Complex Phenomena project, we have found that students are often able to develop solid
explanatory models of various phenomena, with only a small amount of background knowledge. We generally encourage
modelers to try and make sense of a problem on their own before seeking external resources, and often they are quite surprised
at how far they are able to get. To help convey a sense of this process, we will describe the development of a StarLogoT
predation model from the standpoint of a student, Talia. While Talia’s case has its own unique characteristics, the topic of
predator/prey interactions is popular with high school students and, thus, we have observed many "average" students going
through a modeling process quite similar to Talia’s.

3.2. Finding rules for wolves - an initial model

Talia’s task was to formulate a plausible set of rules for a typical predator and a typical prey. Recall that the characteristic
properties of predator-prey interactions are invariant across many species and many different conditions. Rather then be
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specific, then, these rules needed to point to general behaviors that all such species can be said to perform in one way or
another. In her first attempt, she described a predator (say, a wolf) as moving about in the StarLogoT world and looking for
prey (say, sheep). As the wolf needs energy to live (which it must obtain by eating sheep), she decided that each step in the
world will cost the wolf energy. Running out of energy will cause the wolf to die, and the only way to gain energy is by eating
sheep. Here is a simple rule-set for a wolf based on the Talia’s description (stated in summary form here):

Rule-set W 1: wolf

at each clock-tick:

1. move randomly to an adjacent patch and decrease energy by El

2. if on the same patch as one or more sheep, then eat a sheep and increase energy by E2
3.ifenergy I O then die

4, with probability R1 reproduce

Talia gave the sheep a simpler rule-set. Their job is only to move about and reproduce, though they may still be eaten by the
wolves:

Rule-set S1: sheep

at each clock-tick:

1. move randomly to an adjacent patch
2. with a probability of R2, reproduce

3.3. Running the model
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Figures 2a (lef}) and 2b (right). Two diférent outcomes fiom rule-sets W1 + S1. Red lines represent predator population size and blue lines represents prey population
S1Z€.

After Talia ran her model several times, she noticed that one of two general outcomes would always occur.
Either there were oscillations until all the sheep were eaten, whereupon the wolves died from starvation (figure
2a). Or, there were oscillations until the number of sheep dipped too low and the wolves all died off; at which
point the sheep reproduced exponentially (figure 2b). Her simple rule-set thus succeeded in producing
oscillations, but the pattern was unstable. The next logical step in the modeling process was for her to determine
the cause of this instability and correct her model. In order to do this, Talia engaged in a process of successive
revision — she would repeatedly devise some variation of her rule-set, and then program it and observe its
effects.

3.4. Researching the relevant biological literature

Research mto scientific literature is often a part of the model development process. This can help amend any
errors in a student’s knowledge of the phenomenon or reveal any important facts that the student might be
overlooking. After experiencing difficulty devising a rule-set that would lead to stable oscillations, Talia did some
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research to determine the source of the problem. Notably, she read that when such systems were first created in
the laboratory the findings were very similar to her StarLogoT model: either the predators ate all the prey and
then starved, or the predators first died, and then the prey multiplied to the carrying capacity of the environment
(Gause, 1934). Several differences between the natural and experimental/model settings could account for this
discrepancy. The most significant such factor was the lack of constraints on the growth of the prey population in
the experimental settings. In nature, the size and rate of growth of the prey population are constrained by several
factors, including limits on the food resources available to prey and limits on their maximum density (Luckinbill,
1973). The laboratory experiments and Talia’s model, however, included abundant food for the prey, and no
other adversities in the system but the possibility of predation.

3.5. Revising the model

The major disparity between the experimental setting and the natural case study was the lack of constraints on
the growth of the prey population. Talia addressed this by including a third species within her model — grass —
which the sheep must feed on, and which is available i limited supply. There were then ways the prey could die
— either by being eaten or by starving. This yielded an updated rule-set for sheep and a new rule-set for grass:

Rule-set S2: sheep

at each clock-tick:

1. move randomly to an adjacent patch and decrease energy by E3
2. if on grassy patch, then eat ‘grass’ and increase energy by E4

3. if energy < 0 then die

4. with probability R1 reproduce

Rule-set P1: patches

at each clock-tick:

1. If green, then do nothing

2. If brown, then wait X1 clock-ticks and turn green

Shown m figure 3 is a typical outcome from rule-sets W1 + S2 + P1. This plot shows the population levels of the
predators, the prey, and the grass.
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Figure 3. A typical outcome from rule-sets W1+ S2 + P1. Red represents predator population size, blue represents prey
population size, and green represents relative amount of grass.
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Talia was surprised to find this model much more stable. Oddly enough, she saw that limiting the resources of the
prey population actually increased thewr chances of survival. Conversely, by allowing the prey population
unlimited food, they were actually more likely to die off! This surprising result, just as true in the natural world as
it is in the StarLogoT world, is known m the scientific literature as the ‘paradox of enrichment’ (Rosenzweig,
1971). Tala was pleased to find that her revised model had correctly predicted this result.

4.0. Modeling Synchronized Fireflies

In this section, we present a second example of how students can use StarLogoT as a laboratory for exploring
biological mechanisms. Our example follows the inquiry of an undergraduate student, Paul, a philosophy major
whose formal biology instruction consisted solely of high school biology courses. Paul had heard of the
phenomena of synchronously flashing fireflies and was intrigued. The following paragraph will provide some
background.

For centuries, travelers along Thailand’s Chao Phraya River have returned with stories of the astonishing flashing
fireflies that mhabit the mangrove trees along the banks. Come nightfall, the fireflics in a given tree will pulse their
lights, on and off; in near perfect synchrony with one another. There are several species of firefly that are known
to do this, such as the Southeast Asian Pteroptyx Malacae and Pteroptyx Cribellata. When one such firefly is
isolated, it will typically emit flashes at regular mtervals. When two or more such fireflies are placed together they
entrain to each other — that is, they gradually converge upon the same rhythm, until the group is flashing in
synchrony (Buck, 1988).

How do the fireflies achieve this coordinated behavior? When we think about how behavior is coordinated n our
daily lives, we tend to think of schedules and elaborate plans. Paul was perplexed at how creatures that seem to
have little capacity for intelligent planning are nonetheless capable of such coordination. It was Paul’s suspicion
that there must be a simple mechanism behind the feat of the synchronizing fireflies. His goal was to try to
understand this mechanism by building a model of it in StarL.ogoT.

4.1. Approaching the problem — initial assumptions

To begin, Paul made several working assumptions about these fireflies — he was prepared to revise them later if
necessary. First, he decided that the mechanism of coordination was almost certamnly a distributed mechanism.
That is, the fireflies were not all looking to a leader firefly (or some other stimulus) for "flashing orders", but rather
were achieving their coordnation through passing and/or receiving messages from other fireflies. From his
previous experience with Starl.ogoT, he had learned that not all coordinated group behavior requires a leader to
direct the group (see Resnick, 1996; Wilensky & Resnick, 1999). A second assumption, following the first, was
that the system could be modeled with only one set of firefly rules; that is, with every firefly in the system
following the same set of rules. Although he recognized that this assumption might have been too strong, just as
ant and bee populations do divide roles among their groups, he decided to first try out the simpler hypothesis of
undifferentiated fireflies. Yet a third assumption Paul made concerned the movement of the fireflies — that it was
not necessary to model this movement as coordinated or governed by deterministic rules, but rather it could be
modeled as random flights and turns. From experience with other StarLLogoT models, he had come to appreciate
the role of randomness in enabling coordmnation (Wilensky, 1997; 1999). In a wide variety of domains, ranging
from the movements of particles in a gas, to the schooling of fish and the growth of plant roots, Paul had seen
how stable organization could emerge from non-deterministic underlying rules. A final assumption was that the
behavior of'the fireflies could be modeled in two dimensions.
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These assumptions transformed Paul’s task into one of finding a plausible set of rules for a typical firefly. Since
Paul knew that a firefly left to its own would simply contmue to flash at a regular pace, he reasoned that there
were now two principle questions that he had to answer. The first was to determine what would trigger a firefly
to change the timing of its flash, and the second was to determme what the response of the firefly would be to this
trigger stimulus.

4.2. Thinking like a firefly

Often when building a model, students find it helpful to identify with the individuals within the model and to view
phenomenon from their perspective. In order to attack the first of his two questions, Paul began to "think like a
firefly". He reasoned along the following lines: If I were a firefly in that situation, what information would / have to
go on? It would be dark, and I probably wouldn’t be able to see the other fireflies. I probably wouldn’t have
much capacity for hearing or sensing the other fireflies either. I would, however, be able to see their flashes.
Perhaps, then, I could look to see who else is flashing and then use this information to adjust my own flashing
pattern. From this, Paul provisionally concluded that the trigger stimulus was probably the flashing of other
fireflies.

Next, he considered what the response of a firefly would be to this stimulus. Paul could think of several
possibilities: a firefly could flash in response, a firefly could increase or decrease the delay until the next flash, or
perhaps the firefly could modulate this delay depending on the ‘strength’ of the stimulus. He found it was difficult
to mtuit the effect of each possibility — none of them result in synchronization in any obvious fashion. The next
step was to test each mechanism by coding it up as StarLogoT model and observing the effects.

4.3 Putting it together — an initial model

Paul consolidated his decisions and assembled an mitial model to test out various mechanisms. To regulate
rhythmic flashing behavior, the model firefly incorporates a timer that continually counts down from a parameter
R to zero and then resets to R and begins the cycle again. Each time the timer reaches zero, it causes the firefly to
flash — that 1s, the firefly changes its color to yellow for one clock-tick (rules F1.1 — F1.3). The firefly also
“flies’ around by moving randomly at each clock-tick (rule F1.4). Fmally, rule F1.5 is the flash reset rule. Paul
began with a flash reset rule would, in response to any flash seen within an adjacent patch, cause the firefly to
flash immediately and reset its timer to R.

Rule-set F1: firefly

to initialize:

0. set timer with random value between 0 and R

at each clock-tick:

1. if color is yellow (flash is on), then change color to black (flash is off)
2. if timer is zero, then change color to yellow and reset timer to R

3. decrement countdown timer by one
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4. move randomly to an adjacent patch

5. if there is a yellow firefly within one patch, then change color to yellow (flash is on) and reset the
timer to R

When Paul coded up this rule-set in the StarLogoT language and executed it, he found that it didn’t quite work.
In fact, it did cause flashing behavior to propagate through the population, but the fireflies couldn’t stop flashing
— that is, they perpetually caused each other to flash until the result was one persistent flash. In response, Paul
experimented with several other flash reset mechanisms and variations to his rules. Though he observed the
emergence of several interesting patterns, he was unable to find a plausible rule-set to give him the precise
behavior he was mterested in.

4.4. Researching the relevant biological literature

Notice how far Paul was able to get without reference to detailed research on real fireflies. From his initial goal to
model ‘whatever’ was going on, he was able to reason to the point where he was seeking a very particular sort
of mechanism. At this point, Paul did some research into the scientific literature in order to obtan information
about real fireflies (Buck, 1988; Buck, 1976; Buck, 1968). From this research, Paul discovered that many of his
design decision were, in fact, biologically plausible. This includes his focus on a distributed synchronization
mechanism, his assumption of undifferentiated fireflies, and his conclusion that flashing serves as the means of
communication for synchronization. He also learned that the mechanisms of synchronization he had tested out
were not far from the actual mechanisms i fireflies. Though different methods of synchronization are seen across
species, one strategy that is similar to Paul’s strategy is called ‘phase-delay synchronization’. Under this strategy,
when a firefly perceives a flash it delays its next flash so that it will occur one flashing period after the perceived
flash. This is the strategy known to be employed by the Southeast Asian fireflies of the Pteroptyx genus. Paul’s
next step was to alter his existing model in order to determine whether this strategy would actually work.

4.5. Revising the model

Paul’s rule set needed only slight modification in order to test the phase-delay synchronization strategy. He
altered it as follows:

Rule-set F2: firefly
0-4. Identical to rule-set F1
5. if there is a yellow firefly within one patch, then reset the timer to R

Paul executed rule-set F2 using 1000 fireflies, and was amazed to see the model fireflies converge upon a single
rhythm before his eyes (figure 4). Paul was encouraged by the initial results of his investigation, and was left with
even more questions to consider and to research. For example, he was intrigued by the ability of some fireflies to
adapt not only the timing of ther flash, but also the duration between flashes. The papers he had looked at gave
no complete theory of how this could be done. He was also mterested in customizing his model to reflect the
idiosyncrasies (e.g. multiple consecutive flashes, responses to irregular stimuli) of particular species, such as
Pteropox Malacae and Photinus Pyralis. Though he began his inquiry with only a single question m mind, he
found that his questions multiplied as his research continued.
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Figure 4. Typical plot of the number of flashes in a population at a given time under rule-set F2.
5.0. Concluding Remarks

The embodied modeling approach we have presented and illustrated herein can be the basis of a modeling-
centered biology curriculum in secondary and post-secondary contexts. By removing the barriers of formal
mathematical requirements, it enables students to meaningfully engage the dynamics of complex biological
systems. They are able to construct models of such systems, reason about the mechanisms that underlie them and
predict their future behavior. Because they are able to use their knowledge of the individual elements in the
system to construct their model, they are provided with an incremental path to constructing robust models. When
their knowledge of the individual biological elements is combined with therr knowledge of their own embodiment,
their own pomt of view, they are enabled to think like a wolf, a sheep or a firefly.

The above examples have, we hope, demonstrated the power of the embodied modeling approach to enable
students to construct robust models and engage in exciting scientific inquiry. The modeling-based classroom is
dramatically different from most venues of classroom practice. Rather than passively receiving an authority’s
explanation of science and mathematics concepts, students seek out and consider these concepts on their own.
Rather than carry out the directions for predetermmed lab studies, students engage m new nvestigations. What
underlies this approach is our deep conviction of the value of reasoning about scientific order. In both the
predation and firefly examples presented above, students were encouraged to reason through a problem,
creating and testing their own theories and hypotheses, before reaching for the established literature.

There are, however, significant practical obstacles to employing the embodied modeling approach on a large
scale at this point n time. Foremost amongst these is the unfamiharity, to most teachers, of the modes of
operation of the modeling-based classroom as described above. Overcoming this obstacle will necessitate
significant teacher education efforts on the changed role of the teacher in the classroom. Another significant
obstacle is the relative sparseness of personal computers in classrooms. StarlLogoT requires the computational
power of typical current personal computers. To take full advantage of the approach, a class needs to have at
least one of these per three students. Many classrooms do not meet this requirement. Finally, the modeling
approach requires teachers and students to be comfortable with algorithmic thinking and debugging, topics that
are optimally learned through longitudinal developmental strands. As of now, there is not significant commitment
to these topics and strands in K-16 education.

Despite these significant obstacles, there are good reasons to believe that the approach we describe will come to
be widely mcorporated into the science and social science curriculum. Most of the obstacles described above
are short-term obstacles. The eventual proliferation of computers in classrooms combined with educational
studies describing the effectiveness of the modeling-based classroom and the overwhelming adoption of modeling
tools by practicing scientists will put pressure on teacher education programs to adopt these new methods and
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tools. Indeed, it is already happening n school districts and schools of education that are located near high
technology centers.

Our approach promotes several processes of reasoning that are central to science: developing original
hypotheses, formalizing ideas, researching existing solutions, and critical analysis of results. We believe that
experience with these processes will be of significant advantage to all students as they seek to understand
science and, more generally, the world around them. Few students will go on to become scientists. To the ones
that don’t, we owe them more than an introductory glimpse of current theories — we owe them the tools with
which to appreciate scientific evidence and to reason in a thorough, scientific manner on their own. For the ones
that do, we owe them a framework within which they will be better prepared to absorb and appreciate the
myriad facts they will encounter for years to come. Thus, it is our hope that the approach we are developing will
serve as a framework for all students to be able to work and think like scientists.
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carly stages. Mitchel Resnick has been an invaluable collaborator in thinking about issues of complexity and
education in general and i exploring the predator prey models m particular. Daniel Dennett provided valuable
criticism of the firefly model and inspired many of our observations about embodied modeling,
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