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We examine an implementation of a probability-and-statistics participatory-
simulation activity in a networked classroom to investigate the equity it affords in
terms of student learning opportunities. The simulation activity, S.A.M.P.L.E.R,
was designed for middle schoolers to learn basic statistical sampling theory.
Students each drew their own samples from a shared population, then each
inputted a value reflecting their quantification of their samples. Classroom input
was plotted and compared to the true population value. Students devised strategies
to coordinate classroom sampling and mathematize perceptual judgment to
achieve accurate prediction. We compare the design to a non-networked
collaborative construction project enacted in the same classroom and demonstrate
and analyze advantages of the networked design, which was more demanding of
student participation, more supportive, more student-centered, more inclusive,
more suited to capitalize on classroom social dynamics, and more equitable in
terms of emergent distribution of student roles and skill development.

This paper discusses a case study of collaboration-and-equity affordances of networked
classrooms (e.g., Roschelle, Penuel, & L. Abrahamson, 2004; Ares et al., 2004). These
technologies and the classroom activities they enable, such as HubNet participatory simulations
(Wilensky & Stroup, 1999a, 1999b, 2002), are showing promise in supporting student
engagement, student-initiated inquiry/exploration of scientific and mathematical phenomena,
high-level discussion of challenging content, and real-time assessment (Abrahamson &
Wilensky, 2004, 2005a; Berland & Wilensky, 2005; Ares, Stroup, & Schademan, 2004; Stroup,
Ares, & Hurford, 2004). Examining the potential role technology can play in promoting equity in
education, Lee (2003) concludes that, “computer-based technologies offer unique opportunities.
Computer-based tools can provide underlying architectures that allow for multiple forms of
modeling, of ways that learners can represent their understanding, and multiple routes for
interactivity and appropriation” (p. 58; see also Hooper, 1996; for issues of equity in non-
technological design for mathematics education, see, e.g., De La Cruz, 1999; Fuson & Lo
Cicero, 2000). This paper focuses on one such underlying architecture designed to enhance
participation by enabling multiple forms of modeling, representation, interactivity, and
appropriation. The particular interest of this paper is that we compare the participation
affordances of two designs, one using traditional media and another using networked technology.
Both designs were implemented in the same classroom as part of a single unit. Specifically, the
data set for this study is from an implementation of ProbLab (Abrahamson & Wilensky, 2002,
2005b, 2005c¢), a probability-and-statistics unit under the umbrella of the Connected Probability
project (Wilensky, 1993, 1997), in middle-school classrooms (see also Abrahamson & Wilensky,
2005d).



In ProbLab, students work both in traditional and computer-based media (see also Abrahamson,
Blikstein, Lamberty, & Wilensky, 2005, on our choice to mix media). Students analyze
combinatorial spaces of stochastic objects and literally construct these spaces in the form of
“picture bar charts.” Students then work in the NetLogo modeling-and-simulation environment
(Wilensky, 1999) to conduct simulations of empirical-probability experiments. Students compare
the combinatorial spaces they have built to the distributions of random outcomes they receive.
These comparisons support discussions of computer-based mathematical modeling, randomness
vs. determinism, sampling, distributions, and the Law of Large Numbers (the Central Limit
Theorem; see below for an overview of the Problab design). Finally, students participate in
S.A.M.P.L.E.R. (Abrahamson & Wilensky, 2002), the statistics component of ProbLab that is
implemented in the HubNet (Wilensky & Stroup, 1999a) networked technology.

In Abrahamson and Wilensky (2005c), a complementary paper, we examine issues of
collaboration and equity in implementations of the combinations tower, the traditional-media
component of ProbLab, in two 6"™-grade classrooms. Here we investigate these same issues in
implementations of S.A.M.P.L.E.R. We begin by overviewing the design of ProbLab. Next we
focus on S.A.M.P.L.E.R. so as to contextualize the data we subsequently analyze. In particular,
we will look at forms of participation in S.A.M.P.L.E.R. and the learning affordances of these
forms. Following, we will describe the implementation of S.A.M.P.L.E.R. in our focus Grade 6
classrooms, including examples of student insight and inventions. Finally, we will compare the
implementation of the combinations tower and S.A.M.P.L.E.R. in these classrooms. In light of
the classroom excerpts we furnish and findings from post-test data, we will examine whether the
participatory simulation afforded more students more mathematically meaningful participation.
Conclusions from this comparison will then be analyzed in terms of the unique features of
networked technology for collaborative-learning classrooms.

Overview of the ProbLab Design

ProbLab is designed to support student inquiry into connections between theoretical probability,
empirical probability, and statistics.' ProbLab consists of a set of interrelated NetLogo
(Wilensky, 1999) models and associated activities. The learning environment, including the tools
and activities, is based on a design rationale that these three constructs are related, that students
will understand these constructs better through coordinating them, and that therefore students
need tools and activities that allow for such coordination of the perspectives (see Abrahamson &
Wilensky, 2005e, for a cognitive perspective on ProbLab’s design rationale). For example, one
theme of ProbLab is for students to explore relations between the anticipated frequency
distribution, which we determine through combinatorial analyses, and the outcome distribution
we receive in computer-based simulations of probability experiments. To facilitate the
exploration of the relationship between such theoretical and empirical work, we build tools that
bridge between them. These bridging tools (Abrahamson, 2004) have characteristics of both the
theoretical and empirical work. Specifically, the combinatorial spaces are designed in formats
that resemble outcome distributions, and experiments are structured so as to sustain the raw data.

' To interact with ProbLab’s NetLogo models, including simulations that relate probability to
geometry and to basic genetics, see http://ccl.northwestern.edu/curriculum/ProbLab/index.html .
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Figure 1. Artifacts and activities in the ProbLab probability-and-statistics experimental unit.

The core activities in ProbLab are based on the 9-block, a 3-by-3 grid in which each “square
variable” receives one of the designated “color values.” Figure 1 (see above) features several key
design elements of the ProbLab unit that are related through the 9-block. Figure 1a shows one of
512 unique permutations of the green/blue 9-block. Students collaborate in finding and creating
the 'combinatorial sample space' of the 9-block. They use paper, crayons, scissors, and glue, to
create and assemble the combinations tower (Figure 1b, 1c¢) that rises from the classroom floor
up to the ceiling, with columns of height (in 9-blocks) 1, 9, 36, 84, 126, 126, 84, 36, 9, and 1 (the
coefficients of the binomial function (a+5)"9). Figure 1d features an empirical experiment in
NetLogo, “9-Blocks,” that dynamically builds outcome distributions of randomly generated 9-
blocks (it is projected on the classroom overhead screen, and a student is presenting her
understanding of why the outcome distribution in this probability experiment resembles in shape
the combinations tower, even though the outcome distribution represents thousands of 9-blocks
and not just the 512 different possible 9-blocks in the combinatorial space). Figure 1e shows a
student participating in the S.A.M.P.L.E.R. participatory simulation activity. The student is
sampling from a hidden population of thousands of green/blue squares; he is taking samples each
of 9 squares (a 9-block) and 1 square (a 1-block).

Having overviewed the ProbLab unit, we will now elaborate on S.A.M.P.L.E.R.

The Design of S.A.M.P.L.E.R. and its Inherent Learning Opportunities

S.A.M.P.L.E.R., Statistics As Multi-Participant Learning-Environment Resource, is an activity
for a networked classroom studying basic statistics concepts. We will now further explain the
design and then present learning opportunities afforded by the design.

The S.A.M.P.L.E.R. activity. S.SA.M.P.L.E.R. is a participatory simulation activity implemented
in the HubNet architecture (Wilensky & Stroup, 1999a, 1999b). Students participate through
clients (in the current version of S.A.M.P.L.E.R., these clients are personal computers”). These
clients are hooked up to the facilitator’s server that communicates with the clients and processes
student input. In S.A.M.P.L.E.R. (see Figure 2, below), students take individual samples from a
population so as to determine a target property of this population. The “population” is a matrix of
thousands of green or blue squares (Figure 2a) and the target property being measured is the
population’s greenness, i.e., the proportion of green in the population. A feature of the activity is
that population squares can be “organized”—all the green squares to the left, all the blue squares
to the right (Figure 2b). This organization indexes the proportion of greenness as a part-to-whole

? Using the Computer—HubNet package (Wilensky & Stroup, 2002).



spatial extension that maps onto scales both in a slider (above it) and in a histogram of students’
collective guesses (below it). When a round of S.A.M.P.L.E.R. begins, the population is hidden.
By clicking on the interface of their computer screens, students each take from the population a
set of different individual guesses (Figure 2¢) and analyze these samples so as to establish their
best guess for the population’s target property. Students input their individual guesses and these
guesses are processed through the central server and displayed as a histogram on the server’s
interface that is projected onto the classroom overhead screen (Figure 2d). Note that whereas all
students sample from the same population, by default each student sees only their own samples,
unless these are “pooled” on the server. Note also that students are each individually responsible
for determining the value of greenness coming from their own samples—only once these values
are input does the program display the distribution and calculate its central-tendency indices.
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Figure 2. Selected features of the S.A.M.P.L.E.R. computer-based learning environment.

The histogram (see Figure 2d) shows all student guesses and the classroom mean guess and
interfaces with the color-separated green—blue population. Note the small horizontal gap (Figure



2d, middle) between the classroom mean guess and the true population index. This gap
represents the classroom mean error—it is the difference between the true population value of
greenness and students’ collective guess of that value. Because a classroom-full of students takes
different samples from the same population, the histogram of collective student input typically
approximates a normal distribution and the mean approximates the true value of the target
property being measured. Individual students are identified with data points on the plot and
“embody” these data (“I am the 37”... “Soam I!”... “Oh no... who is the 81?!”). That is, the
classroom is plotted on the overhead screen as a distribution of data points, and individual
students’ location in this distribution is mathematically meaningful, largely because it is
personally meaningful. Thus, students can reflect both on their individual guesses as compared
to their classmates’ guesses and compared to the true population value of greenness, and they can
reflect on the classroom guess as compared to the population value. Such reflection and the
discussion it stimulates is conducive to understanding sampling and distribution (Abrahamson &
Wilensky, 2004).

The S.A.M.P.L.E.R. activities include a group game. Students each begin with 100 points. At
each round, points are deducted from each student according to the distance of their guess from
the true value. But students can choose whether to bet on their personal guess or on the
classroom average guess. Over many rounds, it is more advantageous for students to go with the
classroom average, because some populations are not uniformly distributed and so students are
dependent on each other for achieving a collective guess that is usually more accurate than their
own guess. Abrahamson and Wilensky (2004) found that student reasoning about sample means
as associated with their classmates helped students ground essentials of the Central Limit
Theorem in terms of the “Law of Large Socia/ Numbers.” In choosing to go with the group
guess, students take a certain socio—mathematical leap of faith—they trust, adopt, and harness
the power of large numbers (see also Surowiecki, 2004, on the “wisdom of crowds”). This
mental leap to the group guess is difficult when students have confidence in their own input that
reflects their own samples and calculation/estimation; students need to understand that their
personal input, reliable as it may be, is just one data point in a distribution of sample
means—their input may be completely correct per se yet nevertheless off the mark of the true
population value.

S.A.M.P.L.E.R. activities are, therefore, designed to motivate both individual and collaborative
work by creating feedback loops between students and the classroom forum. Specifically,
whether students are competing against their classmates or collaborating with them, students
each try to achieve as accurate a guess as possible. Moreover, students who have determined that
the group guess is generally more accurate than most individual guesses and have decided to bet
on the group-guess are motivated to help their classmates analyze their respective sampling data,
because each and every student input will impact the collective guess and, therefore, their own
personal success. Thus, the design encourages student-to-student mentoring.

Learning opportunities in S.A.M.P.L.E.R. Abrahamson and Wilensky (2004) found that 6"-
grade students working with S.A.M.P.L.E.R. invented a variety of mathematically sound

sampling strategies. Also, students leveraged classroom socio-mathematical dynamics.
Abrahamson and Wilensky (2004) concluded that:



S.A.M.P.L.E.R. engages students in activities wherein a shared object serves as a
platform for articulating intuitions, learning professional vocabulary, testing hypotheses,
and debating strategies of statistical inquiry. The inherently collaborative activities in
S.A.M.P.L.E.R., embodied primarily in students’ interdependence for data and for
estimates from these data—impelled students to scholastic argumentation that: (a) teased
out individuals’ intuitions; (b) afforded opportunities to engage in and refine
mathematical terminology, representational forms, and conceptual tools; and (c)
introduced and positioned ‘distribution,” ‘variability,” and complementary micro and
macro perspectives in probability and statistics as social-mathematical constructs.

Methodology
Participants
A total of 40 students in two 6th-grade classrooms (the “AM” or morning classroom and the
“PM?” or afternoon classroom) participated in a three-day (80 minutes per day) implementation
of S.A.M.P.L.E.R. in a middle school in a very heterogeneous urban/suburban district (school
demographics: 43% White; 37% African—American; 17% Hispanic; 2% Asian; 36% free/reduced
lunch; 5% ESL). From Abrahamson and Wilensky (2005¢) we have these students’
mathematical-achievement group (top, middle, and bottom thirds) and student SES (top, middle,
and bottom thirds). We also know that, in this particular student body, student mathematical-
achievement group, SES, and ethnicity are related. The teacher was a White female mathematics-
and-science teacher in her second year as a teacher. The first author and the classroom teacher
shared the facilitation of the activities. Another two researchers assisted with occasional
facilitation, technological support, and with videotaping and interviewing the students. Students
were seated in a large horseshoe shape. So each student could see most of the other students as
well as the overhead screen

Collected Data

Our data include a total of about 8 hours of video footage from the implementation of the design.
There are extensive field notes from each day as well as a volume of correspondence between the
researchers and the teacher and within the design-research team. Two video cameras were
employed to elicit student descriptions of their activities and thoughts. Also, we have student
response to a post-test questionnaires designed to elicit student strategies and the reasoning
behind these strategies.

Data Analysis

In order to investigate student forms of participation, we studied the video data, observing
student sampling-and-calculation strategies, as seen on their individual computer screen and on
scrap paper they used to perform calculations. Also, we paid close attention to individual student
utterance both in on-the-fly interviews with the researchers and in classroom discussion. To
study better these episodes, we transcribed student utterance. These transcriptions supported
microgenetic analyses of these episodes as well as discussion within the design-research team
over these analyses and over the degree to which the episodes characterize the entire unit
(ranging from “typical” to “very rare”). Student post-intervention response on two items relevant



to this study was tabulated according to whether students answered affirmatively or negatively
on “yes/no” questions that were followed by requests for elaboration.

Results and Discussion
The collaborative construction project (the combinations tower) and the networked-classroom
participatory simulation activity (S.A.M.P.L.E.R.) were each implemented over 3 days. Both
designs broke away from traditional classroom dynamics in that students were given space and
time to pursue their personal ideas towards problem solving a mathematical challenge. The
combinations-tower design demanded a concerted effort in analyzing a complicated
combinatorial space, and S.A.M.P.L.E.R., too, demanded a pooling of classroom recourses in
analyzing statistically properties of a population. Yet, whereas in the combinations-tower design
students self organized into skill-specific roles, thus denying many students opportunities for
practicing the range of necessary problem-solving skills, in S.A.M.P.L.E.R. students all had
ample opportunity to reason through the core problem. Still, high mathematical achieving
students had a greater voice in the activity, but this advantage was constantly reestablished
“democratically” through evaluation of the efficacy of these students’ suggestions and not
through teacher-mandated division of labor or institution of a stable hierarchical division of roles
(see Abrahamson & Wilensky, 2005c).

This final section of the paper begins with a description of the implementation. We will go into
detail in narrating classroom episodes for two reasons. Firstly, networked classroom design is
still relatively new, and so it may be useful for some readers to have a better picture of “what it
looks like,” in order better to evaluate such design in terms of the classroom dynamics and
learning opportunities it creates. Mainly, though, we wish to demonstrate broad and inclusive
forums of mathematical reasoning that, at least in our interpretation, are enabled by participatory
simulation activity. In particular, we wish to describe how students of all mathematical
achievement levels and/or proneness to leadership both contribute equitably to classroom
discussion and receive feedback from the forum. This feedback comes from the entire range of
classroom mathematical reasoning and not only from a narrow cohort of similar mathematical
level, as might occur in designs where student cohorts are either created by teacher grouping or
emerge through student-to-student interaction (see Abrahamson & Wilensky, 2005¢).

Description of Implementation

In describing the implementation, we will treat the two classrooms as though they are one, unless
distinctive classroom-specific behavior emerge that can be tied to classroom-specific student
make-up or facilitation emphases. Each implementation day will be overviewed, followed by
selected transcriptions that highlight student reasoning in working individually or collaboratively
and connections between these types of student work. Specifically, we will demonstrate student:
(a) personal sampling strategies; (b) understanding of distribution, mean, and randomness; (c)
ideas for classroom collaboration, including coordinated distribution of population segments,
sharing sample data and methods for quantifying these data, and optimizing the inputting of
guesses once the sample-mean values have been determined. Also, we will demonstrate cases in
which the content itself, as shaped by the technology, supported student insight and
collaboration.



Overview of Day 1. Lessons began with an introduction to the S.A.M.P.L.E.R. population that
was projected on the overhead screen. Students’ personal computers were not yet logged in.
Students interpreted the population in terms of a collection of 9-blocks and explored quantitative
implications of these relations. Students logged in, so each could watch the population from
closer, on their personal screens. Students each described what they were seeing (e.g., an
elephant with a nose, a diamond, superman, a teddy bear, the collection of all possible 9-blocks
like in the combinations tower, one possible combination of a giant “1000-block”). Building on
student input, the facilitators gradually steered the conversation to quantitative aspects of the
population, and asked how green the population is. Students suggested sampling as a means to
focus and calculate the greenness, and the classroom debated the size, number, and location of
the samples, and, once samples were taken, how to determine the greenness value from them.
We enabled students’ logging in, they inputted their individual guesses, and the classroom
analyzed the collective histogram. Students interpreted the classroom mean guess and each
compared it to their own guess. Once we exposed the population’s true value of greenness,
students compared the classroom mean guess to their individual guesses for this value,
evaluating these in terms of accuracy and how this accuracy reflected the specific samples taken.

We created a new hidden population and enabled student sampling. Each student could now
manage their own sampling, and, indeed, each student chose their own sampling attributes (size,
number, and location). The teacher moved between students, speaking to them individually, with
each student explaining their strategy and the teacher supporting them in moving from
qualitative reasoning, e.g., “there is much more blue than green,” to more quantitative reasoning,
e.g., “I think it’s 11% green, because I sampled 100 little squares and 11 of them are green.”
Each student had different samples, and students had a variety of strategies for determining the
population greenness as based on those samples, and so each student had different guesses for
green that were based on those samples and strategies. Often, some students collated their
samples in one big square, so as to view a “miniature replica” of the large population, whereas
other students distributed their samples so as to cover as much ground as possible (see Figure 3,
below, for typical sample distribution strategies). Again, students inputted their guesses, these
were plotted as a histogram, and students discussed their performance.
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Figure 3. Typical examples of student sample distribution in the same population, each with 125
squares: (a) concentrating in the middle to view a “mini-population”; (b) covering larger grounds
with 9-blocks; (c) maximizing coverage with 1-blocks; (d) sample rows; and (e) creative picture.

Sample transcription from Day 1. The following transcription is from the first day of the
implementation, when students were sampling from the population on their personal computers.
The data demonstrate that whereas students were engaged in solving the same problem, each
student, working individually, brought to bear their own mathematical ideas. This transcription is



from student utterance over a period of seven minutes—student ideas were elicited by a
researcher who interviewed a total of seven students on the fly, moving from one student to the
next and asking each one of them for their sampling strategies. The researcher focused on
understanding student reasoning and not so much on supporting student progress. Yet, this
transcription also demonstrates the teaching opportunities that the teacher had during this same
implementation of S.A.M.P.L.E.R. Preceding each conversation excerpt, we introduce the
student. In addition to the student’s mathematical-achievement group, which is the focal factor
for this paper on equity in learning opportunities, we have included the student’s ethnicity,
gender, and SES group. We include students’ ethnicity and SES factors to demonstrate the
demographical diversity of our study classrooms as well as to suggest that this study, which
looks at issues of equity among students of varied mathematical achievement, may carry larger
social issues, at least in the school district of our study classrooms.

[El is an African—American female student, bottom-third SES, and middle-third

mathematical-achievement group. ]

El: I’'m going to start... I want to keep going down and down [parallel columns,
beginning on the top-left corner and moving to the right], like start on the line right here
[left column] and then I’m, like, going to go around, and then I want to, like, I want to
see, like, how much blue there is and how much green there is, then I’'m going to try
and make a percent.

[El has a systematic method for sampling. She articulates an intent to use multiplicative

reasoning]

[Ta is an African—American female student, bottom-third SES, and middle-third

mathematical-achievement group. She is preparing a pencil and a sheet of paper.]

Ta: The last time, I got pretty close—I was just two [%] off. And what I did was, uhhm, I
counted the nine squares, and then took how many [blue squares] is in there, and did
however-many was there.... Oh, wait... Ok, if there were 2 I did “9 — 2" [to find how
many green], and then, so that was 7, and then I just did that to all of them [all of the
samples, each of size 3-by-3]. And then I got ... and I added everything once I got that,
and then [ got to my answer.

[Ta’s reasoning is apparently not multiplicative, unless she is careful to take a total of

exactly 100 sample squares, in which case the total number of green squares is also the

percentage green of the samples.]

[To is an African—American male student, bottom-third SES, and bottom-third

mathematical-achievement group. He has taken eight 3-by-3 samples in the center of the

screen and one large rectangular collection of samples on the bottom-left corner of the

screen|

To: Well, first I put it up to 11 squares [a sample of size 11-by-11]—I thought it was
going to help better. But then it took too long so I brought it down to 3 [3-by-3]

Researcher: How did you decide where to put the squares?

To; I did it randomly

[To says “randomly,” yet his sample distribution is nearly uniform. He has not yet

learned to articulate his intuitive method.]




[Ash is an African—American female student, middle-third SES, and middle-third
mathematical-achievement group. Ash’s samples, of size 3-by3- and 1-by-1, are very
uniformly distributed across the screen]

Ash: T used 13 of the bigger blocks [each 3-by-3 squares], and then I figured to use more
of the smaller boxes, mostly because my sampling allowance was running out and
because I'll probably get a closer guess by looking at it, and then by looking at the big
ones I probably wouldn’t.

[Ash articulates well her sampling method, but it is not clear how she intends to

mathematize her samples or why she considers the smaller samples as particularly

useful.]

[Rac is a White female student, middle-third SES, and top-third mathematical-
achievement group. Rac's screen is uniformly strewn with samples of size either 3-by-3
or 1-by-1]

Rac: I did 3-by-3 boxes, and I did, like, a kind of pattern, and then, with my [sampling
allowance] left, I did just 1-by-1 boxes, to get an idea of what was where. Then I
thought there was a little more green than blue, so I guess “52” [% greenness in the
population]

Researcher: [] Why not “55” or “57?” Why “52?”

Rac: Because, from my thing [samples] it looked pretty much even, but there are more
green; but it looked really close.

[Rac articulates her sample distribution method as enabling her to see “what’s there” in

the entire population. She the uses estimation to mathematize the samples. ]

[Jo is an Hispanic male student, bottom-third SES, bottom-third mathematical-
achievement group. Jo has taken two larger samples, one beside the other, all on the top
of the screen.]

Jo: I don’t know

Researcher: Like, how did you decide to take those samples?

Jo: I don’t know—I just chose them. [grins]

Researcher: Kind of “whatever?”

Jo: Yeah.

[Jo has difficulty articulating his mathematical reasoning.]

[Ja is a White male student, upper-third SES, upper-third mathematical-achievement
group. Ja has a single very large sample in the top-right corner of the population
window.]

Ja: I just tried to make as big a box as I could....so that I could see what’s behind; so I
could see more, so it would be easier to guess.

Researcher: Why is that easier to guess? Some kids here say they want smaller ones,
some say they want bigger ones.

Ja: So you can guess—so it shows you, if... the bigger you get the more you can slide to
the right and slide to the left, so you can just guess. You can see how many greens there
are and then like try and move them to the side.

Researcher: Oh, I see, just like in the big window when we... [“organize”]

Ja: Yes.
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[Ja appropriated the “organize” technique. By “slide” he means imagining as though all
the green squares move to the left, and all the blue squares move to the right. His strategy
of concentrating all the samples as one large square is conducive to this imaging
estimation technique.]

In sum, each student had an opportunity to problem solve individually. This occurred in the
combinations-tower implementation, too, on the first day. However, in that implementation,
middle- and lower-achieving students’ problem-solving opportunities decreased drastically after
the first day, once students began to actively collaborate in constructing.

Note that this slice of data focused on student individual work within the S.A.M.P.L.E.R. design.
It is typical in S.A.M.P.L.E.R. that students only gradually learn that they should collaborate and
how they should do so. Our next excerpt will demonstrate group work.

Overview of Day 2. On the second day of the implementation, student sampling strategies
became more sophisticated. Partnerships first emerged in the form of students joining up in pairs,
and later in groups of three students. Students showed each other their samples, and some student
pairs even planned their sampling so as to maximize the coverage of the population. For
instance, one student might sample on the left side of the screen and the other on the right. Thus,
while each student worked at their own station, the content, as it was facilitated in this design,
engendered spontaneous collaboration.

Students still had difficulty in mathematizing and coordinating these pooled samples. For
example, one student estimated, based on her samples, that the population was 47% green, while
her partner estimated the same population at 33% green. These two particular students argued
over the value of greenness, trying to choose the better value of the two, but did not attempt to
negotiate a value, such as 40%. In other partnerships, one student input an average of the two
values, while the other student did not. In yet other groups, both students inputted their average
guess. One student explained that pairs should decide either each to input a guess based on their
own samples or both to input a guess based an average of their pooled guesses. Later in this
lesson period, group members cooperated by counting up their pooled green and blue squares
and calculating an overall ratio and all inputting the same value. Because progressively more
groups were acting this way, the histograms, from run to run, had smaller ranges and taller bars
(see, for example, in Figure 4, below, the distribution in the histogram that has a minimum of
two students per guess).

Figure 4. Distribution of student input. Modes of two or more and low distribution variance
reflect student data pooling and coordination of input values.
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In the afternoon class, a unique mathematical situation pushed up student spontaneous
collaboration from pairs and triplets to the classroom level. In a sampling round about half way
through the lesson, it so occurred that students were each only receiving completely blue
samples. Students were concerned whether they should input “0%,” in case somewhere on the
screen there were some green squares. So students asked each other whether they had received
any green squares, and soon students were asking the question out loud. A precedent was thus
created by which the entire class pools individual information. As it turned out, the population
was indeed 0% green. Thus, a unique mathematical case—an extreme value along the continuum
of the sample space, engendered spontaneous classroom-level collaboration.

Sample transcriptions from Day 2. During the first round, after students had input their guesses,
we pooled all the student samples on the main screen and displayed the histogram of student
guesses. The classroom mean was 27.5% green. Then, students were first given an opportunity
either to bet on their own guess or on the group guess. Not a single student chose to bet on the
group guess. We revealed the population, and the true value was 21%. Many students lost points.
The researcher, addressing the whole classroom, asked why nobody had chosen to go with the
group guess.

[Ky is an African—American female student, bottom-third SES, bottom-third
mathematical-achievement group]

Ky: Maybe they’re not right, so you should go with your own [guess].

[Ky trusts her own guess more than other student guesses. She does not articulate her idea
in terms of the samples, the population, or the classroom mean]

[Ka is a White female student, upper-third SES, middle-third mathematical-achievement

group]

Ka: 27.5%, or whatever it was [the classroom mean], uhhhm, it seemed a little bit high
for what was there [all the pooled samples]

Researcher: Oh, so you felt that it was too high. What was your guess?

Ka: 20.

[Ka, like Ky, trusts her own guess more than other student guesses. She articulates her

idea in terms of mistrusting the classroom mean as compared to the data]

[Je is a White female student, upper-third SES, upper-third mathematical-achievement

group]

Je: Well, I, uhhm didn’t go [with the group], because some people guessed really high
and some people guessed really low, and just because it’s the average it’s not
necessarily going to be what, uhhhm... because, if somebody decides to get really high,
because when they do their sampling they got a lot of greens, and then some people got
almost all blues, it’s just going to have to average those, it’s not going to necessarily go
with the most accurate one. So that’s why I went with my own guess, which was 21%.

[Je interprets the distribution of student guesses in terms both of the population’s true

properties—how the green and blue squares are distributed—and student “measurement

error”’—students’ over- or under-guessing based on their samples. Later, Je explained her
strategy. She had only taken samples of size 1-by-1. She took 4 sets of such samples,
each with 10 squares, for a total of 40 exposed squares. She then calculated a proportion.

12



As it turned out, however, she had calculated the proportion of green squares out of blue
squares, 7/33, rather than green squares out of all squares, 7/40. Had we not discussed her
strategy with her, she would not have realized her fortuitous error.]

Note that Ka and Je, whose mathematical reasoning was more advanced than other students, also
achieved high accuracy. This is important for other students to witness, so that they are
encouraged to be more mathematically sophisticated—to understand that rigorous methods are
conducive to higher accuracy; that guessing is insufficient.

On a subsequent run, we intentionally created a population with a non-uniform distribution of the
green squares. Consequently, student individual samples varied more than on the previous run.
This apparently caused some concern, since more students shared resources. For example, Lot
and Devvy peered at each others’ samples. Lot said to the researcher, “I’m going with the group
guess this time. Because I got like... He [Devvy] says he got all that green, [yet] I have [only] 5
green. [ don’t think mine’s accurate.” Other students said they would decide whether or not to go
with the group guess only once the group guess is revealed. Students were reluctant in
committing themselves to the group guess before having seen all the guesses, but over three
additional round, more and more students chose to go with the group guess. Also, from round to
round, the classroom guess was increasingly accurate.

Population value

GI'Ollp mean guess

Figure 5. A researcher—facilitator pointing to a distribution with an outlier.

Of particular interest was a run in which the group guess was better than any individual guess
(see Figure 5, above). Note the close clustering of most student guesses around the mean and the
quasi-normal distribution of guesses. Also note that one student guess deviated significantly
from the guess cluster (see, in Figure 5, above, the single bar on the far right, highlighted by a
ellipse). In a classroom discussion around this guess, Jade identified herself as the student who
had input this guess. A student interpreted Jade’s guess as indicating that her samples must have
been greener than other student guesses. If Jade were working on her own, she may not have
received feedback on her performance (which had been flawed). Another student came up to the
board and analyzed the histogram, explaining that had it not been for Jade’s high guess, the
classroom group guess would not have been so accurate—Jade’s guess pulled the classroom
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mean up. Following this analysis, Jade was thanked, especially by students who had chosen to
bet on the group guess. This episode is an example of how personal and interpersonal planes
interface in the participatory simulation activity—Jade’s bar connected between her own screen
(private space) and the server screen (public space): Jade uploaded her guess to the classroom
histogram, and the histogram, in turn, contextualized Jade’s guess in light of other students’
work. The episode is also an example of how a facilitator can help turn a social event into a
mathematics learning opportunity, and vice versa.

In another notable episode, students, who had all input their guesses, requested that we pool all
the samples so that they see all of the samples together. The facilitator pooled the samples and
asked that any student who wishes to change their initial guess could do so as long as they
explain the reason for their change. Many students did change their guess, explaining that once
they saw a “bigger picture,” they realized that their previous guess was inadequate. The
facilitator asked how all these changes in input might affect the histogram. Students replied that
the histogram would be more “bunched up.” Indeed, once all the new guesses were input, there
was a big clustering of guesses (lower variance than usual). Thus, students grounded new
mathematical constructs in their collaboration strategies.

Overview of Day 3. On the third day of the implementation, we played a game in which the
morning and afternoon classes competed. There were four rules to this game:
1. Everyone goes with the group guess
2. No “Pool Samples” [students do not see all the samples at once]
3. Five rounds of 10 minutes each
a. 7 minutes to input
b. 3 minutes discussion
4. A limited “sampling allowance” of 100 squares per student

The rationale of this competition was to enhance student-to-student sharing of strategies and
support. A new monitor introduced on the interface showed students’ mean points. Once these
rules were stated, a classroom debate erupted over best strategies for optimizing the accuracy of
the group guess. One possible strategy the facilitators were hoping to steer students towards was
that students each look at a different part of the population. Also, we were wondered if students
could reach an understanding that one and the same classroom mean guess would result from the
following two group-level plans: (a) each student calculates their sample mean and inputs it; or
(b) students first pool their samples and then calculate the mean of all of samples and all input
that mean. The former course of action would result in a distributed histogram, whereas the latter
would only give the mean. Also, the latter strategy would be redundant, in that the computer
program calculates the mean. Finally, we were hoping to foster opportunities for students to
reason proportionately. To scaffold student proportional reasoning, we began with each student
having an allowance of 100 squares (see above, Rule #4). The following transcription
demonstrates the richness of the designed learning tools. Also, note how each student contributes
an element within this richness, introducing content from the previous week, when students
studied the combinatorial space of the 9-block.

Pri: We can work together. Three or four people can take part of the square [the
population].
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Teacher: Some of you were doing that on Tuesday already, right? You were dividing it
up so you could sample more area.

Rac: What if half of the class does the top half of the square, and the other half of the
class does the bottom half of the square?

Student: Yeah.

Teacher: And how are you going to look and decide what the numbers are?

Ja: Count how many greens you have!

Researcher: So we just count up all the greens? And then what do we do?

Ja: You subtract it from a hundred.

Researcher: Like... what?... Count up yours or everyone’s or what?

Ja: Everyone’s.

Researcher: Ok, so say we get... I don’t know... If we get 212...7

Ja: Then...mm’mm? [Ja is nonplussed; some laughter in the classroom]

Researcher: I like where you’re going. We just have to figure out what to do with it.

Pr: Subtract it by 512.

Researcher: Subtract it from 512. Oh, I think I know where you’re getting that number
from. That’s the number of combinations in the combinations tower.

Pri: But isn’t that the same amount as there is in the...[population?]

Researcher: [reminds students of earlier lesson, when they had determined that there are
about 400 9-blocks in the population]

Mo: It wouldn’t do any good to count all the blues and the greens, because you don’t
know how many squares there are in all, so, like, you could count 50 blues, but it still
wouldn’t be half and half, because you don’t know how many...

Researcher: But we do know that each kid has 100 squares allowance.

Mo: Right, but... // But, I mean, we don’t know how many squares there are in the whole
thing, so the mathematical stuff wouldn’t really work.

Researcher: [reminds students of earlier lesson, when a student counted 61 squares per
row and per column in the population]

Jo: [says the population doesn’t look like a square. The researcher responds that this is
due to projection distortions.]

El: But when you click on the thing and it shows up, it doesn’t have... How can you
count the squares unless you make a grid, because they’re all together.

Teacher: That’s a good question. You can think about it as you’re working.

The above transcription captures student collaborative statistical inquiry. Students’ contributions
to the conversation differ in the initiative and mathematical reasoning they reflect, for instance
Mo was moving in the direction of proportional reasoning, whereas Ja did not know how to
process the data at all. The content, the affordances of the learning tools, and methods for using
these tools are interwoven, for instance, in talking about the squareness of the population or
needing a grid to count the squares. That students have trouble understanding the content through
sorting out the elements of the learning tools they are working with is testimony of a need for
such classroom-level discussion of the activities as well as testimony of these Grade 6 students’
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poor fluency in proportional reasoning.” The collaborative-learning affordances of PSA together
with student difficulty with the mathematics necessary for successful participation in these PSA
suggest that these PSA be implemented nof in later years but in earlier years. Through such
engaging activities, students could potentially bootstrap the mathematical content.

In the other classroom, many students were enthusiastic to use a “telephone game” method, by
which they all pass on their guesses. The debate then focused on whether or not it was a good
idea for students to share their guesses even before they have input them. Most students thought
this was a good idea, but then Sa, rated by the teacher as the top mathematical thinker in his
classroom, said
It’s not a good way, because if one person says it, and they’re way off, and everyone
trusts them, then the group guess will be way off, and it will screw up the whole guessing
thing, so it’s better that everyone guesses their own guess. Or guesses, like,... not
everybody follows the same one.
To this, another student responded that, “Actually, it’s a good idea, Sa, because if it does get way
off, you’ll tell us, and then we can change it.” Sa retorted, “but I’'m not always right.” Lot said
that Ray should be the “marshal,” because he had done the best on the previous day. Ka
suggested that students each present their guess and then the classroom should debate which
guess is the best.

Students shared their samples loudly. They divided the population among the classroom. A
student called out, “Who got more green [than blue]?” and then, “Who got more blue [than
green]?” All students responded by raising their hands at the appropriate moment. One could
have used this poll as an index of the greenness. For instance, if three-quarters of the class got
more green, then 75% would be a good guess. At that moment, however, students did not think
of that strategy.

After all the students had input their guess, we displayed the histogram of all the guesses and
gave students an opportunity to change their guess. Several students stated that their guess is
higher than the classroom average and the classroom average is too low, and so they would
increase their guess just so as to drag the classroom average up. They did so and the guesses
were replotted. Once the true value of green was revealed, it turned out that the classroom
average was too high and, so, students lost several points. This annoyed some students, who
explained that participants should not change their guesses; that if they happen to have greener
samples than other students, they need not assume that the entire population is as green as their
samples. The classroom debated whether they should each input their personal guess or each
input some agreed upon value.

* The classroom was challenged when asked to calculate the proportion of 10 green squares out
of a total of 50 squares. Several students called out “5%.” The researcher asked the teacher
whether students had studied proportion, and she replied that indeed they had.
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Figure 6. Histogram bars reflect student work in pairs and triplets.

Figure 6, above, demonstrates that on the subsequent round many students chose to “co-guess,”
based on local averaging. Students had not changed their guesses as in the previous round. Note
that the classroom guess is only 2.3% away from the true value. Sa commented:
Maybe that says that if we don’t talk—don’t set it up with each other—the better we do.
Maybe if we set it up in a different place, we all get the same things, but if we all do it
randomly, we’ll all get different things, most likely.
The teacher asked whether students should be calculating their guesses rather than just basing
these guesses on perceptual judgment, and Lot suggested counting up the green squares and
determining a ratio.

Thus, the classroom struggled with several difficult mathematical problems simultaneously: (a)
Should students “guess and then discuss” or “discuss and then guess?”’; (b) Should students
coordinate their samples or just sample randomly?; and (c) Should students bother to calculate
sample means, or is this redundant, because errors from perceptual judgments cancel each other
out?; In fact, might it not be the case that student guesses will be /ess accurate if they attempt to
mathematize their perceptual judgments, due to the limitations of student mathematical skills?

These questions are fundamental to statistics. They make sense only as coordination issues
between students. Thus, statistical content, in this design, is dependent on authentic collaboration
in problem solving. Students must address these issues in order to perform well, and so the
content is grounded in a meaningful and shared classroom experience, an experience that can be
referred to in subsequent classroom conversations, after the intervention is over. For this sharing
to be truly inclusive, all students must have a voice. The following incident, though singular,
unplanned for, and brief in the overall picture of the implementation (the incident lasted 30
seconds), sheds light on the role of the networked technology in enabling equitable classroom
discourse.

Two students, Je and Cha, had stepped out of the classroom, but their computers were still

logged in to the system, and so we needed guesses inputted from these computers. The teacher,
standing by these two computers, addressed the classroom, asking what values she should input
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for these absent students. The task is not spelt out, so some students may have understood that
these guesses should be neutral in terms of the classroom overall guess, yet other students may
have regarded this as an opportunity to trumpet their personal vote. Students began calling out
their opinions, first in turn, with each student addressing the previous student, but then
simultaneously. The teacher, facing this shouting-poll heterophony, must decide.
Teacher: So what should I put in for Je, here, and Cha?
Students: 15. 20. No, 24! 25. No, 30!!! 20.16. [voices rise]
Teacher: 15, 20, 24, 16...
Students: [overlapping voices] 23. 25. 20. 20. 20. 16.There’s not a lot of green. 20. It’s
too high! 20, 20, 20. 20. There’s not a lot of green. 20, 20. 30. There’s not a lot of
green. 20, 20, 20.
Teacher: I'm going to put in 20, right down in the middle.

Of note is that only about half of the students participated in this Attic vote. It is not entirely
clear whether the growing preponderance of “20” is due to students converging on this value,
whether it reflects the number of students intending to input “20,” or if it is just a strong lobby
for this value. Yet, towards the end (see transcription, above), one student voted “20” often,
using a different voice for each vote, as though he were spontaneously changing
identities—impersonating and embodying a larger crowd—thus thickening the vocal mode of
“20.” The teacher’s decision to input “20” is fairly reflective of the shouts, albeit “23” would
have incorporated each voice only once (and would have been only 2% and not 5% away from
the true population value). However, in comparing these votes to students’ subsequent computer-
mediated input in this round (see Figure 7, below), we note the absence of the voices “5,” “17”
(two students), “18,” and “19” (two students). Thus, the technology supports a representation of
student voice distribution that is both more reliable and more accurate.

VL.

Figure 7. Student guess_zl—istribution with a mode of 20 and a mean of 19.6

From one round to the next, more and more students were counting their samples and not just
eyeballing them. These students, upon receiving feedback as to the relatively high accuracy of
their individual guesses, became a vocal lobby for counting up samples and not just using
perceptual judgment. When a sufficient majority of students decided to count their samples and
not just guess, this method was agreed upon as an effective method. All students adopted this
method. The classroom achieved a high-accuracy guess. In Figure 8 (see below), the classroom
mean input for the population greenness is 91.2% and the true population value is 92%. For the
remaining rounds, students carefully counted the sampled squares. Guessing was no longer
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considered a sufficiently accurate mathematical practice. Students were now mathematizing their
perceptual judgments.
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Figure 8. Accurate classroom guess achieved through mathematizing samples (screenshot)”

Note in Figure 8 (see above), the low variance of the classroom input distribution. The low
variance is primarily due to some student groups coordinating a common value. Yet, other
students did not coordinate and, instead, input their own guess. Thus, a final issue students had to
resolve was whether they should each input their personal value or first compute the classroom
average and then each input that mean value. Several participants claimed that students should
each input their own guess, because the program will compute the average more accurately.
Other students thought that the classroom average would be “stronger” if many students guessed
the calculated average rather than inputting guesses that are above or below the average (as
though a mean that is also the mode is in some sense a more powerful estimate). Yet the majority
of the students were content to input their own guess, and so this practice was announced as the
improved strategy that all students were expected to follow. Indeed, Figure 9, below,
demonstrates that on the subsequent round, classroom guesses were normally distributed and that
the mean guess was precisely the population value.

Figure 9. Normally distributed and highly accurate classroom guess.

*In the current version of S.A.M.P.L.E.R., this interface has been simplified.
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The classroom persisted in this strategy on the last round and, again, their mean guess was
precisely on target. Thus, through five iterations under the four competition rules, the optimal
mathematical practice emerged as a classroom collaborative optimization solution.

Summary

We have described the implementation of S.A.M.P.L.E.R., a participatory simulation activity in
the mathematical domain of statistics. We intend our description to demonstrate the range,

Table 1.

Learning Affordances of Non-Networked and Networked Designs for Collaborative Learning

Combinations Tower

S.AM.P.LER.

Participation

Support

Student-
centered

Inclusion

Leveraging
social
dynamics

Equity

Some students not engaged yet this is
not immediately evident to facilitator.
Loose group leadership and/or
unsuccessful within-group distribution
of labor allows for ‘hangers on.’

Students do not have access to the
reasoning of most of their fellow
students, and, in any case, they do not
have access to all students’
mathematical reasoning. The teacher
must be physically near each student to
elicit their reasoning.

Once assigned to task forces, most
students no longer initiated solution
methods

Weaker student opportunity to
contribute is sensitive to the math-
ability make up of their groups

Social dynamics worked against
weaker students, who, through self
selection and tacit peer pressure,
adopted more menial and less
mathematical roles

Students self-organize by role and
many develop delimited expertise

All students consistently engaged as
evident in their sampling and input.
The technology plays a major role in
mitigating classroom management
issues, thus allowing the facilitator to
devote time to individual students.

Student output is anonymously
displayed for all to see and respond,
student interdependency embedded in
activity—it is within the classroom’s
interest to mentor strugglers. The
teacher can elicit student strategies by
discussing the histogram.

All students continuously had
opportunities to invent, explore, and
refine solution methods

Mathematical “outliers” received
special attention, because every voice
was critical for overall success

Peer pressure was turned towards each
student, yet the learning zone did not
become stratified, since all students
worked with the same tools

All students engaged in the same task;
all input is weighed equally

richness, and depth of classroom discussion enabled by HubNet networked-classroom
technology. We focused on several brief classroom episodes both to exemplify classroom
progress along a collaborative problem-solving track and to show how the design supports an
ongoing assessment of many students’ understanding that is expressed through their electronic
gesture as well as their verbal commentary. Abrahamson and Wilensky (2005c), looking at data
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from the same classroom, investigated learning opportunities in a non-networked collaborative
construction project in the domain of probability (the combinations tower). Arguably, these two
designs are comparable in terms of the level of mathematical reasoning demanded for successful
completion of their respective core tasks. Table 1, below, presents a summary comparison
between findings from that study and the present study along dimensions of participation and
collaboration.

Post-Intervention Questionnaire

Following the completion of the mini-unit, students filled out questionnaires designed to elicit
their personal strategies and the statistical reasoning behind these strategies. Table 2 (see, below)
summarizes the number of students who responded affirmatively, negatively, or otherwise on
two items. The table is structured so as to group students according to their “compound”
response on both of these items. That is, the rows group students by their response on Item #1,
and the columns group students by their response on Item #2. Thus, each student is assigned to a
single cell in the table.

Student reasoning, as expressed in their written responses, was grounded in their personal
classroom experiences. For instance, students who recommend betting points on one’s own
guesses explained that they had lost points when betting on the classroom guess, because some
students did not perform well on this collaborative task (e.g., “They guessed way off”). Students
who preferred betting on the classroom guess explained that doing so saved them the loss of
points. Students who responded that one should bet either on one’s personal guess or on the
group guess explained that one’s choice should depend on: (a) one’s confidence level per
population (e.g., one might feel insecure when the population appears to be non-randomly
distributed in terms of the location of green squares); (b) one’s sense of personal skill in guessing
and calculating (e.g., if you do not feel that you are an able mathematician, you should go with
the group guess, because you may well be considerably off mark); (c) one’s interpretation of
other students’ work, such as if you are informed of their samples or guesses (e.g., if there are
outliers, you may decide to go alone); and (d) whether the activity has been declared as a
competition within the classroom or between classrooms (e.g., if it is a between-classroom
competition, one need not mind if one’s guesses deviates from the classroom mean as long as the
classroom is doing better as a whole).

Table 2.
Student Response on Two Post-Intervention Questionnaire Items
2. “Should students pool their data before guessing?”

Yes No Other
1. “What should you
bet your points on?”
On your own guess 10(5)* 0(2) 1(0)
On the group guess 7(3) 0(3) --
It depends 3(6) -- --

Note. The items were open ended (not multiple choice). For the sake of clarity in this table and discussion, we have modified the
original text of the items. Item #1 was, “Some students chose to go with their own guess. Other students went with the group
guess. What is better—to go alone or to go with the group guess? Why?” Item #2 was, “ Some students wanted to see other
students’ sample before inputting in their guess. Is that a good idea or not? Why?”

*Afternoon classroom values appear in parentheses
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Note, in Table 2 (see above) that only in the afternoon classroom did some students respond that
one should not attend to data other than one’s own. This difference between the classrooms maps
well onto students’ differential experiences in these classrooms: On the last implementation day,
students in the afternoon classroom conducted their last two runs by not sharing data and
achieved higher-accuracy group guesses (they also beat the morning classroom, with 88 vs. 86
points after five rounds— this despite one “give away” round in the morning classroom, in which
the greenness was a stark 0%). Given the fit between student explanations and classroom
experiences, the two items appear to be reliable in eliciting learning experiences in the two
classrooms.

Of the 9 students who replied that “It depends” on the item, “What should you bet your points
on?,” all 3 morning-classroom students and 3 of the afternoon-classroom students are among the
highest-achieving students of their respective classrooms. Seven of these 9 students were female
students. Nine of the 13 students who replied that one should go with the group guess were
female students. The 3 students who replied that one should not attend to other people’s guesses
were all female and were either middle- or low-achieving students. There is no difference
between the “On your own” and the “On the group guess” rows in terms of mathematical
achievement, gender, ethnicity, or SES. We interpret this result as indicating that the design
offered equal experiences for students irrespective of their background or coming-in
mathematical level. This latter finding stands in stark contrast to findings from a comparative
analysis of the combinations-tower implementation (Abrahamson & Wilensky, 2005¢), in which
the classroom was stratified in terms of their post-intervention achievement by mathematical
level, ethnicity, and SES.

Conclusions

In comparing two designs for collaborative learning, one that was enabled by the HubNet
networked-classroom technological infrastructure (S.A.M.P.L.E.R.) and another that was
implemented in traditional media (the combinations-tower project), we found that the HubNet
classrooms were: (a) more demanding of student participation—each and every student was
expected to share the products of their mathematical reasoning (b) more supportive—the product
of student reasoning was exposed to many eyes, and products that deviated from the classroom
norm were easily assessed as such and received facilitator and student attention; (¢) more
student-centered—students each had opportunities to pursue their individual sampling strategies;
(d) more inclusive—the activity supported classroom-level discussion as well as group level
discussion, so all students were exposed to more explanations from their classmates, including
the reasoning of the higher-achieving students and not only to the input of like-achieving cohort
members; () more suited to capitalize on classroom social dynamics—the significance and
quality of individual student work was built and contextualized by classmate electronic action,
with proximal classmates streaming information orally/gesturally and distal classmates
interacting through the computer medium and classroom discussions; and (f) more
equitable—students all engaged in the same mathematical challenges, were not marginalized to
fringe tasks, and were not dominated by higher-achieving students (so even the most reticent
students had a voice and vote in the collaborative activity).
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| Ann Bert Cathy  David

Ann Skill 1 > | Skill2 > | Skill3 > | Skill4 >
Bert Skill 1 > | Skill2 > | Skill3 > | Skill4 >
Cathy |[Skill1 > |[Skill2 >|skill3 > | Skil4 >
David Skill 1 > | Skill2 > | Skill3 > | Skill4 >

Figure 10. Learning trajectories in continuous (CLZ) and stratified (SLZ) learning zones.

Figure 10 (see above) represents two different types of student learning trajectories that may
result from the implementation of designs for collaborative projects. In a stratified learning zone
(SLZ; Abrahamson & Wilensky, 2005c¢), students self-organize into a production assembly line,
with each student engaging in the practice of a delimited skill. For example, Cathy (see above,
the second-from-the-right column) repeatedly engages in a project-based action by which she
practices “Skill 3,” which might be “counting” or “coloring in little squares.” In a continuous
learning zone (CLZ), Cathy works from “Skill 17 through to “Skill 4” (see above, second-from-
bottom row). We contend that participatory simulation activities in networked classrooms allow
for continuous and not stratified learning zones. These networked activities are more equitable in
that they are both more demanding and more supportive of all students. The key to equitable
learning in collaborative classrooms is to furnish all students with the same learning tools and
build facilitation infrastructure that provide enough personal space and time for students each to
problem solve individually as well as share their ideas and receive feedback from the facilitator
and many classmates. Student participation was channeled, expressed, and conditional on
particular modes of using specific tools—taking samples from a population and inputting a value
representing the sample mean. That is, students each had to mathematize their own perceptual
judgments. The design created both a personal and group-mediated incentive to achieve
accuracy, so all students were encouraged to develop the core skill targeted by the design.
Students operated like an orchestra, in which they all played the same instruments yet each
played it in their own style and as best they could. What was it exactly about the networked
activity that allowed for more learning opportunities? The following sub-section addresses this
question.

Activity, design, and learning affordances. The premise of any comparison-based study is that
the study-related essential factors are common to the two objects of comparison. The
combinations-tower and S.A.M.P.L.E.R. activities are both in the domain of probability and
statistics and both require of students careful analysis, mathematizaton, sophistication, and
articulation of intuitive strategies. However, central to the combinations-tower activity and not to
S.A.M.P.L.E.R. was the objective of producing a material object as the “deliverable” of the
classroom collaboration. It is this production process, by and large, that gave rise to the
stratification of the classroom learning zone, in which the more menial tasks were completed by
the lower mathematical achievers of the classroom. In that sense, the combinations-tower design
for collaborative learning is a straw man in this comparison—ostensibly, if one were to strip the
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combinations-tower activity of its materiality, it would not lead to stratification. Yet this straw
dog bites back: It is the very nature of the medium in which the combinations tower was
implemented that allowed for the stratification to emerge. The combinations-tower traditional
activity-medium has a:

1) physical limitation on the number of people who can co-operate simultaneously on the
same minute objects. Yet in S.A.M.P.L.E.R., all students could dip their hands at once
into a 10cm-by-10cm object without seeing what they each pulled out.

2) procedural limitation on the engineering, distribution, and coordination of the production
and assembly of these physical objects. In S.A.M.P.L.E.R., computer procedures
controlled the coordination of student input.

3) feedback limitation on the goodness of a method—in producing many 9-blocks, you can
eliminate duplicates through visual comparison, but unless you patently witness a
possible flaw in your combinatorial strategy, you may be oblivious that this strategy
either creates duplicate items or does not exhaust the sample space. In S.AM.P.L.ER.,
the effectiveness of sampling-and-calculation techniques emerges through classroom
analysis of the histogram created by the computer program in comparison to the true
population value that is disclosed (note that in common statistical practice, the trueness of
the inferred population value is intrinsically tenuous).

4) motivation limitation—students who were committed to a personal method that was
proving ineffective were loath to cut their losses and abandon their method, because they
had created many 9-blocks that they would not know how, subsequently, to reorganize
according to a new method. In S.A.M.P.L.E.R., errors were relatively cheap—the
multiple runs enabled students to begin each run from scratch and, thus, explore multiple
strategies.

5) exploration limitation—once students were committed to contributing by following a
particular group strategy, any deviation was “expensive.” In S.A.M.P.L.E.R., students
were free to work exploratively within their private domain, as long as they contributed
to the public domain according to the consensual methodology.

Thus, networked participatory simulation activities appear to address and all but obviate spatial,
physical, and logistical constraints on collaborative participation imposed by the materiality of
concrete learning tools.

An ideal facilitation of the combinations-tower activity would put a mathematical spin on the
challenges inherent in traditional media. Yet, classroom pragmatics, such as consideration of
time and sustaining student engagement, challenge the implementations of facilitation solutions
that do not tradeoff between the activity product (the combinations tower) and the process
(learning) that it shapes.’ The results of this study suggest that network technologies such as
HubNet mitigate the teacher’s dilemma between product and process. These technologies are
still relatively young as classroom supports, and much R&D is still needed to improve these
technologies and understand their advantages as well their constraints. However, this study
indicates the learning affordances of this medium for facilitating mathematics content with
student inclusion and engagement.

*Recently, we have designed a HubNet networked version of the combinations-tower activity.
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A final point of comparison between the designs regards student access to the learning tools.
Students could take the combinations-tower tools home or even re-create and investigate 3-by-3
grids using pencil and paper. S.A.M.P.L.E.R. materials, at least in the implementation reported in
this study, did not leave the classroom space. We consciously chose not to assign computer-
based homework, even though these materials are available as a resource on the internet, both as
interactive simulations and as part of the NetLogo free download package.® This decision was
made in corroboration with the teacher, who informed us that a significant portion of her
classroom does not have reasonable access to computers outside of school.” Student access to
technology is in itself an equity issue that must be addressed by policy makers. It is our hope and
vision that student access to our materials will grow with the increasing penetration, into the
public domain, of technology as well as the promise of technology-enabled educational
materials. Currently, development efforts are under way to massively scale this technology, and
future studies will examine these efforts.

Pedagogy, design, and equity. We are not claiming that in participatory simulation activities all
students perform at the same level—in any body of students there will be some range and
diversity in mathematical reasoning. The design problem is what happens when this
mathematical heterogeneity is plotted onto free-range collaborative activity: Can we embrace
this heterogeneity or do we inadvertently increase it? Our research is aimed at addressing student
heterogeneity by designing facilitation infrastructure that pull up the mean of this achievement
distribution whilst decreasing its variance. In S.A.M.P.L.E.R., as in the combinations-tower
project, classroom-level success increased as some students adopted other students’ solutions.
But in S.A.M.P.L.E.R., more students worked over more time on the core problems and not on
peripheral tasks, so more students could share in the discovery process of their classmates’ more
advanced solutions as well as understand and appreciate the efficacy of these solutions. So, we
do claim that in the networked activities, students have equal opportunities to think hard,
progress at their own pace, and bring to bear and develop their personal skills, and that
consequentially more students are engaged at a higher mathematical level as compared to their
engagement in collaborative projects where stratification is liable to emerge. The thrust of this
paper is not about the higher-achieving students—these students flourished in both designs.
Rather, this paper is about the middle- and, especially, the lower-achieving students—it is more
with them in mind that designers should strive to build learning environments that afford
equitable opportunity.

S.A.M.P.L.E.R. was designed with the assumption that mathematics content may be introduced
to students as enhancing their intuition and everyday good reasoning. We wish for students to
adopt mathematical tools only once they recognize the ultimately limited capacity of their prior
intuition and reasoning. In this study, students began counting their samples and computing
proportions only once they recognized that doing so is in their interest; when students who were

*S.AM.P.LER,, along with all NetLogo software and models, is available for free download at
http://ccl.northwestern.edu/netlogo/ . For a standalone “solo” version of S.A.M.P.L.E.R., go
through the models page at http://ccl.northwestern.edu/curriculum/ProbLab/index.html .

" For a balanced view of the “digital divide” in the U.S.A, see Compaine (2001), but see also
Kuttan and Peters (2003).
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using these methods were consistently achieving higher precision. A prerequisite for adopting
new tools may be, thus, that students value and wish to engage in the social dynamics of
progress. In S.A.M.P.L.E.R., we attempted to stimulate and leverage such social dynamics by
embedding student playful interaction into the activities. Student response suggested that the
design resonated with students’ models of “group play.” It is still necessary to understand how
students’ participation in S.A.M.P.L.E.R. activities interfaces with learning goals, such as those
delineated by state and national standards. More generally, we identify a need to articulate design
principles for learning environments that intrinsically motivate students as well as vouchsafe that
students leave schools equipped to enter the better echelons of the work market.

Future work. In this paper, we has focused on opportunities and participation and not yet
analyzed the learning results. These results will be reported in a future paper. Also, in future data
analysis, we will describe several case studies of students who participated both in the non-
networked and networked activities to have richer pictures of the differential affordances of the
designs and their relation to student mathematical achievement. Also, we will continue to
improve the design of our networked activities so as to model, emulate, and enable features of
authentic student-to-student and student-to-teacher collaboration practices that occur
spontaneously outside of the virtual space. For instance, we will create virtual spaces where
students can “step aside” to consult with specific classmates, log and share their individual
strategies, query the facilitators, and access classroom-data-base and online information. This
development work carried out at the Center for Connected Learning and Computer-Based
Modeling is intended to augment traditional classroom learning, not replace it. At the same time,
virtual learning spaces will help us reach broader populations of learners, including learners in
remote locations.
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