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Biological phenomena can be investigated at multiple levels, from the molecular to
the cellular to the organismic to the ecological. In typical biology instruction, these
levels have been segregated. Yet, it is by examining the connections between such
levels that many phenomena in biology, and complex systems in general, are best
explained. We describe a computation-based approach that enables students to in-
vestigate the connections between different biological levels. Using agent-based,
embodied modeling tools, students model the microrules underlying a biological
phenomenon and observe the resultant aggregate dynamics. We describe 2 cases in
which this approach was used. In both cases, students framed hypotheses, con-
structed multiagent models that incorporate these hypotheses, and tested these by
running their models and observing the outcomes. Contrasting these cases against
traditionally used, classical equation-based approaches, we argue that the embod-
ied modeling approach connects more directly to students’ experience, enables ex-
tended investigations as well as deeper understanding, and enables “advanced” top-
ics to be productively introduced into the high school curriculum.
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When I observed phenomena in the laboratory that I did not understand, I would
also ask questions as if interrogating myself: “Why would I do that if I were a vi-
rus or a cancer cell, or the immune system” Before long, this internal dialogue be-
came second nature to me; I found that my mind worked this way all the time.
(Salk, 1983, p. 7)

There is a sharp contrast between the picture of the field of biology as studied in
school settings and the picture that emerges from the practice of current biology re-
search. Although the two pictures are linked by similar content and the objects of
study are recognizably the same, the processes involved in the two activities are
quite different.

In school settings, typical instruction emphasizes the memorization of classifi-
cation schemas and established theories. In middle school, classification may take
the form of learning the names of the bones of the body, the names and shapes of
different plant leaves or the phyla in the animal kingdom. In high school and early
undergraduate studies, the content broadens to include unseen phenomena such as
parts of the cell or types of protozoa, but the processes of memorizing classifica-
tions remains essentially the same. Similarly, students study biological explana-
tion by absorbing established theories about the process of photosynthesis, the
Krebs cycle, or the succession of evolutionary ancestors. Even in cases in which
the theories are not yet established, such as the extinction of the dinosaurs, the al-
ternative theories are presented as competing stories to be memorized. Even when
students are exposed to research techniques in laboratory work, the emphasis is on
following a prescribed procedure rather than reasoning from the evidence gathered
in the procedure.

This picture contrasts sharply with the picture that emerges from the recent bi-
ology research literature (e.g., Keeling & Gilligan, 2000; Marion, Renshaw, &
Gibson, 2000). In this picture, the participants are active theorizers. They gather
new evidence and devise methods to test their theories. Instead of accepting classi-
fications as given, they see these classifications as provisional theories that are
constantly reassessed and reconstructed in light of the dialogue between theory
and evidence. Participants also reason both forwards, by constructing theories that
are consistent with the known evidence, and backwards, by deducing conse-
quences of theories and searching for confirming–disconfirming evidence. In con-
structing or assessing an account of a biological phenomenon, they focus on the
plausibility of the mechanism proposed—can it achieve the task assigned it in a bi-
ologically feasible manner? This assessment of the mechanism often involves rea-
soning across a range of levels; thus, participants ask, is the mechanism con-
strained by the structure at the molecular, the cellular, the organismic or the
ecological level?

The contrast between the processes in which these two communities are en-
gaged leads biology students to form a misleading picture of the biological re-

172 WILENSKY AND REISMAN

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
S
a
n
 
D
i
e
g
o
]
 
A
t
:
 
1
9
:
4
0
 
1
 
F
e
b
r
u
a
r
y
 
2
0
1
0



search enterprise. Students form beliefs that biology is a discipline in which ob-
servation and classification dominate and reasoning about theories is rare.
Furthermore, they believe that learning biology consists of absorbing the theo-
ries of experts and that constructing and testing their own theories is out of
reach.1

In this article, we present an approach that attempts to narrow the gap between
school biology and research biology. The approach centers on the use of innovative
computer modeling tools that enable students2 to learn biology through processes
of constructing and testing theories.

In recent years, a number of educational research projects (Feurzeig & Rob-
erts, 1999; Gobert et al., 2004; Jackson, Stratford, Krajcik, & Soloway, 1996; Ja-
cobson & Kozma, 2000; Jungck & Calley, 1985; Lehrer & Schauble, 2000;
Ogborn, 1999; Roberts & Barclay, 1988; White & Horwitz , 1988) have used
computer-modeling tools in science instruction. The approach taken herein dif-
fers from these approaches in its use of agent-based modeling languages (also
known as object-based parallel modeling languages) that enable students to
model biological elements at the level of the individual (e.g., individual
wolf–sheep) as opposed to aggregate (differential equation-based) modeling lan-
guages that model at the level of the population (wolf–sheep populations). This
technical advance in modeling languages enables students to use their knowl-
edge of the behavior of individual organisms (or molecules, cells, genes, and so
on) in the construction of theories about the behavior of populations of organ-
isms. Furthermore, the ability to model individual behavior enables students to
use their personal experience with sensing and locomoting in the world as initial
elements in their models of other organisms. In this way, the well-known ten-
dency of children to explain biological behavior through personification (see
Carey, 1986; Hatano & Inagaki, 1987), instead of being seen as a misconception
or a limitation to be overcome, becomes a building block toward the construc-
tion and refinement of plausible biological explanations.3

In previous work, we and other agent-based modeling designers (Repenning,
1994; Resnick, 1994; D. C. Smith, Cypher, & Spohrer, 1994; Wilensky, 1995,
2001; Wilensky & Resnick, 1999) have described the approach in a broad interdis-
ciplinary context. In this article, we explore the use of this approach, specifically,
in biology instruction.
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1For a similar and much fuller account of the gap between school and research physics, see Hammer
(1994).

2Elsewhere (Tisue & Wilensky, 2004; Wilensky, 2001) we have argued that the availability and ease
of use of agent-based modeling environments have also enabled scientists to conduct experimental re-
search that was difficult or impossible to do with traditional methods.

3For a detailed discussion on misconceptions reconceived, see J. P. Smith, diSessa, and Roschelle
(1994).
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MATHEMATICAL BIOLOGY
AND COMPUTER-BASED MODELING—
IN THE FIELD AND IN THE CLASSROOM

The gap between school biology and research biology can be partially explained
by a lag in the transfer of newer biological methods to the school setting. Indeed,
at all levels from the molecular to the ecological, the science of biology has un-
dergone an important shift over the last century. As biologists have increasingly
availed themselves of the language of dynamic systems to model natural phe-
nomena, biology—once an entirely qualitative discipline—has become more
quantitative.4

Mathematical models have added precision to biological theories, have in-
creased their predictive power, and have been important sources of explanations
and hypotheses. The generation and refinement of such models has become a per-
vasive element of modern biological inquiry. Yet, despite this virtual revolution in
biology practice, the high school and undergraduate biology curriculum have
scarcely noticed. For most secondary and postsecondary biology students, the
study of biology remains primarily an exercise in memorization. Because of the
formidable mathematical prerequisites that quantitative models of biological
change have traditionally imposed, students below the advanced undergraduate
level are given little or no exposure either to dynamic models or to the process of
modeling biological change. The computational approach presented here enables
us to give students this exposure while sidestepping the traditional mathematical
roadblocks.

We begin, in the following section, by describing our “embodied” approach to
biological modeling and the agent-based modeling languages, StarLogoT
(Wilensky, 1997a) and NetLogo (Wilensky, 1999b), in which the models are con-
structed. In the next section, we illustrate this approach and contrast it with classi-
cal modeling techniques by developing both embodied and classical models of
predator–prey population fluctuations. We follow a high school student, Talia, in
her efforts to create embodied models of wolf–sheep predation. In the next section,
we follow another student, Paul, as he develops a computational model of synchro-
nously flashing fireflies (these species of fireflies are prevalent in the Far East, es-
pecially Thailand). In contrast to the topic of predator–prey population dynamics,
the firefly flash synchronization problem does not easily admit classical ap-
proaches and is, thus, unfamiliar to students. We use this example to frame a dis-
cussion of the student modeling process and the relation of this process to model-
ing within science. Finally, in our concluding remarks we respond to criticism of
our approach and summarize the major points of the article.
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4For an illuminating discussion of this transformation of the biological field, see Allen (1975).
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RESEARCH SETTINGS

The student modelers described in this article were participants in the Connected
Mathematics (Wilensky, 1993, 1995) and, principally, the Making Sense of Com-
plex Phenomena (MSCP; Wilensky, 1997b, 2001) projects in which students learn
about complex systems through construction of agent-based models of these sys-
tems. The goals of the MSCP project are to construct computational toolkits that en-
able students to model complex systems, to study students engaged in using these
toolkits, and to make sense of their behavioral dynamics. Research has documented
thedifficultiespeoplehave inmakingsenseofemergentphenomena,globalpatterns
that arise from distributed interactions, central to the study of complex systems. We
have labeled the constellation of difficulties in understanding emergent phenomena
and constructing distributed explanations of such phenomena the determinis-
tic–centralized mindset (Resnick, 1996; Resnick & Wilensky, 1993; Wilensky &
Resnick, 1995, 1999). In the MSCP project we have worked with a wide variety of
students, ranging from middle school students to graduate student researchers as
well as both preservice and in-service teachers, on moving beyond this mindset to a
richer understanding of the dynamics of complex systems. The primary research
sites are two urban Boston high schools. Students from these schools participated in
the project as part of their classroom work. Undergraduates and preservice teachers
participated in the context of teacher education courses at Tufts University. Some
students participated through informal contexts, pursuing modeling investigations
in afterschool settings or at the laboratory, housed at the project site, the Center for
Connected Learning and Computer-Based Modeling (then at Tufts University, now
moved to Northwestern University). In the classroom context, students, typically,
were involved in an extended classroom modeling project led by the classroom
teacher and assisted by project researchers. The role of the researchers was to docu-
ment student work through videotaping and field notes and to support students and
teachers in the use of project materials and modeling languages. Examples of such
support included bringing in books and Web sites that might be useful to the model-
ers and disseminating interesting cases as potential sources of models. Project re-
searchersalsoengagedstudents in structuredactivities (includingparticipatorysim-
ulations not involving the computer; Resnick & Wilensky, 1998) that would foster
reflection on the concept of emergence. They also provided support to students and
teachers on the syntax of the modeling language. The computational models de-
scribed in this article were built in an agent-based (also known as multiagent or ob-
ject-based parallel) modeling language called StarLogoT (Wilensky, 1997a).5 Re-
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5StarLogoT is one of several variants of the StarLogo modeling language (Resnick, 1994, 1996;
Resnick & Wilensky, 1993; Wilensky & Resnick, 1999)—an extended version of MacStarLogo.
StarLogoT and the models described in this article can be downloaded from ccl.northwestern.edu/cm/.
Updated and more complete NetLogo versions of these models can be downloaded from ccl.
northwestern.edu/netlogo/models.
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cently, Uri Wilensky developed another agent-based modeling language, NetLogo
(Wilensky, 1999b), that is a (more sophisticated) successor to StarLogoT. The mod-
els described herein have been converted to NetLogo.6 As NetLogo is the more re-
cent and more powerful environment, for the remainder of this article we refer to
NetLogo and not to StarLogoT. In the next section, we describe the workings of the
NetLogo language and its advantages for modeling biological phenomena.

THE NETLOGO MODELING LANGUAGE

NetLogo derives from, and has contributed to, recent work in the field of complex
systems. This field studies the dynamics of systems that are constituted by many
interacting elements. Taken as a whole, the behavior of these systems can be ex-
tremely complex and difficult to predict, though their individual elements may be
quite simple. Examples can be found in many fields, from physics and chemistry to
economics and political science. Biology has been a particularly fertile domain of
complex-systems-oriented research (Kauffman, 1995; Langton, 1994). Indeed,
though much of the early work in complex systems theory originated in physics
(and to this day, the primary echo of this research in classrooms is in physics
classes), in our view, the paradigmatic area for studying complexity lies in the
study of complex biological systems. Though the brain, the immune system, and
the behavior of organisms such as ants or bees are all oft-cited examples, in fact,
nearly all of biology can be considered from a complex systems perspective. Ge-
netic and cellular processes can be viewed as the complex outcomes from molecu-
lar interactions; organisms and their organs can be viewed as the complex out-
comes from cellular- and genetic-level interactions; and ecological systems can be
viewed as the complex outcomes of interactions between individual organisms. Of
course, there is causality in the other direction as well; organism behavior can af-
fect cellular and genetic level activity, and ecological circumstances can affect the
behavior of individuals. Indeed, one reason complex systems can be so difficult to
study is that aggregate-level structures can have feedback effects on the behavior
of the elements of which they are composed.

NetLogo is a general-purpose (domain-independent) modeling language and
integrated environment. It works by providing the modeler with a framework to
represent the basic elements—the smallest constituents—of a system and then pro-
vides a way to simulate the interactions between these elements. With NetLogo,
students write rules for hundreds or thousands of these basic elements, specifying
how they should behave and interact with one another. These individual elements
are referred to as turtles. (NetLogo owes the turtle object to the Logo computer lan-

176 WILENSKY AND REISMAN

6The application NetLogo and all the models here can be freely downloaded from the NetLogo site
at ccl.northwestern.edu/netlogo/.
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guage.7) Turtles are situated on a two-dimensional grid on which they can move
around. Each cell on the grid is called a “patch,” and patches may also execute in-
structions and interact with turtles and other patches. Some typical commands for
a turtle move in a given direction, change color, set a variable according to some
value, “hatch” new turtles, or look at the properties (variables) of other turtles. Tur-
tles can also generate random values, so that they can, for example, execute a se-
quence of commands with a fixed probability. Patches can execute similar com-
mands, though they cannot change location. The wide range of commands
executable by turtles and patches makes it possible to use them to represent many
different systems. For example, turtles can be made to represent molecules, cells,
or individual organisms, whereas patches can represent the medium (whatever it
may be) in which they interact.8

Dynamic modeling tools, such as NetLogo, are used to represent changes in
the states of systems over time. In NetLogo, time is represented as a discrete se-
quence of “clock-ticks.” At each clock-tick, each turtle and patch is called on to
execute the rules that have been written for it. Students need not write separate
rules for each turtle (or patch)—the power of NetLogo comes from the fact that
all turtles can execute the very same set of rules at each clock-tick. If all turtles
are executing the same rules, will their collective behavior not be repetitive and
uninteresting? To see why this is not the case, it is important to take note of the
fact that even though two turtles might be following the same rules, their behav-
ior could be markedly different. This possibility exists because the two turtles
may have quite different internal properties and may be situated in dissimilar en-
vironments. For example, the turtles may be following the rule “If you smell
food ahead, move forward a distance equal to your body length. Otherwise, turn
around.” If one turtle is in the vicinity of food, it will move forward, the other
turtle, far from the food, will turn around. Even if they are both in the vicinity of
food, and even in the exact same location, if they have different body measure-
ments, they will move to different locations. It is this diversity in internal states
and in surrounding environs that enables the collective turtle behaviors to admit
a surprising degree of variance.

The modeling approach we describe—instantiating the individual elements of
a system and simulating their interactions—is not unique to NetLogo. Such
models have been used across a wide variety of domains and have been referred
to by many different labels, such as object-based parallel models (Wilensky,
1995, 1996) agent-based models (Beer, 1990; Epstein & Axtell, 1996; Maes,
1990; Repenning, 1993), multi-agent models (Jacobson et al., 1998; Wilensky,
2001), individual-based models (Huston, DeAngelis, & Post, 1988; Judson,
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7In Logo (Feurzeig, 1984; Papert, 1980), children type commands to a graphical turtle, and the tur-
tle draws geometric figures on the computer screen.

8Both turtles and patches, as core functional elements of the system, are also referred to as “agents.”
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1994), and particle simulations (Buneman, Barnes, Green, & Nielsen, 1980).
These “new wave” modeling approaches have transformed biology research
practice9 and enabled researchers to model increasingly complex multileveled
biological systems (Forrest, 1989; Keen & Spain, 1992; Langton, 1994; Taylor,
Jefferson, Turner, & Goldman, 1989). For the remainder of this article, we use
the term embodied modeling to refer to this general approach. Although the
other terms described earlier, which we have used in the past, are perhaps a more
accurate description of the technical workings of NetLogo, the embodied model-
ing label more closely matches the experience of a biology modeler who is ac-
tively engaged in understanding and embodying the behavior of individual bio-
logical elements.

In the following two sections of the article, we illustrate the embodied modeling
approach in biology with two extended examples of modeling biological phenom-
ena. We intend these examples to illustrate how such an approach can both (a) fa-
cilitate the creation and verification of predictive multilevel models in biology and
(b) enable biology students to create more powerful explanations of and deepen
their understanding of biological phenomena.

MODELING PREDATOR–PREY
POPULATION DYNAMICS10

The dynamics of interacting populations of predators and their prey have long been
a topic of interest in population biology. Comparisons of a number of case studies
have revealed similar dynamics between such populations, regardless of the spe-
cific species under study and the details of their interactions (Elton, 1966). Nota-
bly, when the sizes of the predator and prey populations are compared over many
generations, we tend to find regular oscillations in these sizes that are out of phase;
where one increases, the other tends to decline, and vice versa (see Figure 1). Nu-
merous mathematical models have been proposed to explain these oscillations. In
this section, we examine several NetLogo models that are at considerable variance
from classical versions. Along with providing a firsthand glimpse of our approach
to modeling systems, the example also allows us to contrast the different perspec-
tives promoted by embodied versus classical tools. We begin with a look at a
well-known classical model.

178 WILENSKY AND REISMAN

9In biology, the term most often used for this kind of modeling is individual-based modeling.
10The predator–prey model and numerous other models (collectively known as connected models;

Wilensky, 1998) can be downloaded from http://ccl.northwestern.edu/netlogo/models.
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The Classical Approach

For many years, models of predation were based on the Lotka–Volterra (Lotka,
1925; Volterra, 1926) model.11 Alfred Lotka and Vito Volterra (working independ-
ent of each other) were among the first to carry over to biology differential equa-
tion models, previously used principally in physics and chemistry. The
Lotka–Volterra model of predation works by specifying interactions between the
predator and prey populations framed as a set of coupled differential equations.
Each such equation describes the rate at which a given variable (e.g., the density of
the prey population) changes over time. Here we present the Lotka–Volterra preda-
tion equations, which describe changes in the densities of the prey population (N1)
and the predator population (N2). Keep in mind that population size and population
density are proportional to one another.

dN1/dt = b1N1 – k1N1N2 (1)

dN2/dt = k2N1N2 – d2N2 (2)

In these equations b1 is the birth rate of the prey, d2 is the death rate of the preda-
tors, and k1 and k2 are constants.

Let us briefly analyze Equation 1. There are two terms in the equation. In the
first term (b1N1), the prey birth rate is multiplied by the density of the prey popula-

THINKING LIKE A WOLF, A SHEEP, OR A FIREFLY 179

FIGURE 1 Fluctuations of the sizes of predatory lynx and prey hare populations in Northern
Canada from 1845 to 1935. From Life: The Science of Biology (3rd ed., Figure 46.7B, p. 1060),
by W. Purves, G. Orian, and H. Heller, 1992, Sunderland, MA: Sinauer. Copyright 1992 by
Sinauer Associates. Reprinted with permission.

11For some recent predation models, as well as some other classical biological models see Murray
(1989).
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tion, yielding the increase in density due to new prey births. In the second term
(k1N1N2), the frequency of interaction between the prey and the predator popula-
tions is determined, yielding the decrease in prey density due to consumption of
prey by predators. The rate of change in the density of the prey population is thus
computed by subtracting the total effect of prey deaths from the total effect of prey
births. Equation 2 can be analyzed along similar lines, although in this equation
predator births are dependent on the frequency of predator–prey interactions,
whereas predator deaths are not—a reversal from Equation 1.

It is important to notice that Equation 1, which describes the prey population,
contains N2, the variable describing the density of the predator population, and
vice-versa. The equations thus specify how the density (and so the size) of each
population depends on the density of the other. Specifically, increases in the prey
population will cause the predator birth rate to rise, and increases in the predator
population cause the prey death rate to rise. A typical plot produced from these
equations is shown in Figure 2. Indeed, we see here the characteristic cyclical fluc-
tuations between the predator and prey populations.

We need not go in further depth about these equations. The point to notice for
now is that the classical approach describes the cyclical fluctuations between pred-
ator and prey populations by specifying relations between population-level proper-
ties, such as birth rate, frequency of interaction, and overall density.

180 WILENSKY AND REISMAN

FIGURE 2 Results of the Lotka–Volterra predation model for lynx and hares with respective
initial populations of 1,250 and 50,000.
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The Embodied Approach

Using embodied tools, such as NetLogo, we approach this problem from a differ-
ent angle. Rather than describe relations between properties of populations, we are
concerned primarily with specifying the behavior of individuals. The relevant
question here is, what kinds of actions must an individual predator or individual
prey follow so that populations of such individuals will exhibit the characteristic
oscillations? Another way to think about the actions of individuals—the method
behind NetLogo modeling—is to consider the rules that each organism might fol-
low in order for the given population-level patterns to result.

There are a number of paths that a modeler might take toward finding such a set
of rules (indeed, there are often a number of equally effective solutions). It may
seem to readers that one would need to be highly familiar with the phenomenon be-
ing modeled and with current theories in order to make meaningful progress, but
our experience indicates otherwise. In the MSCP project, we have found that with
only a small amount of background knowledge, students are often able to develop
solid explanatory models of various phenomena. We generally encourage model-
ers to try to make sense of a problem on their own before seeking external re-
sources, and often they are quite surprised at how far they are able to get. Rather
than quickly reaching for the “facts,” students undertake something akin to a scien-
tific inquiry, and they generally learn much more than if someone had simply given
them the solution. Of course, the body of existing research is quite important to the
development of a model, and NetLogo modelers will often go back and forth be-
tween developing new hypotheses and researching existing solutions. To help con-
vey a sense of this process, we describe the development of a NetLogo predation
model from the standpoint of two students, Talia and Benny. These students were
fairly typical of the secondary student modelers who participated in the MSCP
project.

Finding Rules for Wolves—An Initial Model

Talia’s task was to formulate a plausible set of rules for a predator and a prey. Re-
call that the characteristic properties of predator–prey population dynamics have
been observed to be strongly similar across many species and many different con-
ditions. Rather then being specific, then, these rules had to point to general behav-
iors that all such species perform in one way or another. In her first attempt, she de-
scribed a predator (say, a wolf) as moving about in the NetLogo world and looking
for prey (say, sheep). As a real wolf needs energy to live, she decided that each step
in the world should cost the model wolf energy. Running out of energy will cause
the wolf to die, and the only way to gain energy is by eating sheep. In this way,
Talia was, also, as in the aforementioned Lotka–Volterra model, describing a de-
pendency between predators and prey: Wolves are likely to persist when sheep are
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abundant (because they are unlikely to run out of food–energy), and sheep are ex-
pected to die when wolves are abundant (because they will eventually be eaten).
Here, then, is a simple rule set for a wolf based on Talia’s initial description:12

Rule Set W1: wolf
at each clock-tick:
1. move randomly to an adjacent patch and decrease energy by E1

2. if on the same patch as one or more sheep, then eat a sheep and increase en-
ergy by E2

3. if energy < 0 then die
4. with probability R1 reproduce

Talia decided on a simpler rule set for the sheep. They only move about and repro-
duce, though they risk being eaten by the wolves:

Rule Set S1: sheep
at each clock-tick:
1. move randomly to an adjacent patch
2. with a probability of R2, reproduce

Notice that the mechanism for reproduction in Talia’s model is blind probability;
any wolf or sheep may reproduce at a given clock-tick if the numbers come up
right. This may seem like she was cheating, for surely this is an unrealistic way to
portray behavior at the individual level. Talia had a firm justification for this
though. She reasoned that there are many different ways in which various organ-
isms reproduce, and yet, similar dynamics tend to arise in populations regardless
of the specific reproductive mechanisms. To keep the model as general as possible,
she adopted a probabilistic rule that effectively says “reproduce every now and
then.” This rule allowed her to achieve the desired behavior without being specific
about mechanisms.

Of course, mechanisms are important to embodied models, and they generally
are specified. The rules governing death in this model, for example, are more spe-
cific than those for reproduction: Prey die specifically when they are eaten by pred-
ators, and predators die specifically by running out of food. Wherever the particu-
lar mechanism is relevant to the model, it should be included; otherwise, details in
the model can be minimized using probabilistic rules.

To be sure, there are many simplifications made by Talia’s model that are ques-
tionable. A quick list includes only a single factor limiting the growth of predators
(starvation), only a single factor limiting the growth of prey (they are eaten), ran-
dom movement, no limit on number of organisms on a single patch, only two di-
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12The rule sets are stated in summary form here. For the actual NetLogo code, please visit
http://ccl.northwestern.edu/netlogo/models/predation/.
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mensions, and so forth. It is certainly possible, even likely, that these are not just
simplifications, but oversimplifications. There is no quick way to determine where
such abstractions are valid and where they are mistaken. This uncertainty, though,
is an integral part of the process of modeling—not only with embodied models, but
with any scientific modeling process. The modeler must carefully consider which
kinds of simplifications are plausible, and, even then, it is often only repeated test-
ing of the model and revision of the assumptions that may ultimately lead to a valid
model.

Once Talia had completed the coding of her model in the NetLogo language,
she selected values for each of the parameters in the model (i.e., the E1, E2, R1, R2
parameters of Rule Set 1 as well as the initial number of wolves and sheep, and the
length and width of the patch world). The values of model parameters, initially set
by intuition, will often have a significant effect on the outcome of a NetLogo simu-
lation. The modeler may induce what kind of effects, if any, each parameter has on
the outcome by repeatedly altering these parameters and observing the result. Be-
cause the relation between the various parameters of a model can be nonlinear, this
can be, not surprisingly, a difficult task.

After Talia ran her model several times under various parameter configurations,
she noted that one of two general outcomes would always result. Most often, the
populations oscillated until all the sheep were eaten, whereupon the wolves died
from starvation (see Figure 3, right panel). Sometimes—usually under low density
parameters (e.g., small population size or narrow screen width)—there were oscil-
lations until the number of sheep dipped too low and the wolves all died off, at
which point the sheep population increased at an exponential rate (see Figure 3,
left panel). Thus, Talia’s rule set successfully produced population oscillations, but
this pattern was consistently transient and unstable. These results were clearly not
in line with the sustained population oscillations observed in nature and those of
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FIGURE 3 Two different outcomes from Rule Sets W1 + S1. In the left panel, both popula-
tions (pop.) go extinct. In the right panel, the wolves go extinct, and therefore the sheep “inherit
the earth.”
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the Lotka–Volterra model. The next logical step in the modeling process was for
her to revise her thinking.

Revising the Model

Talia was initially disturbed to find that her model did not meet her expectations.
Still, she was determined to create a version that exhibited a stable relation be-
tween the wolf and sheep populations. That is, one where the two populations
would continue to coexist, despite ongoing fluctuations in size. To generate such a
version, she put great effort into understanding the behavior of her existing model.
She asked herself “Why did the populations crash? What factors might be missing
or misrepresented?” From analyzing plots such as those shown in Figure 3, she
was led to several observations concerning the stability of her model. First, the
peaks of the wolves follow peaks of the sheep. Second, the higher the peaks of the
sheep, the higher the peaks of the wolves. Third, the higher the peak, the deeper the
following crash. Instability in the model appeared to manifest itself in the ever-in-
creasing amplitude of the population oscillations. The peaks get higher and the
crashes get deeper over time, until zero is reached and the cycle ends altogether.
What she decided to search for, then, were factors to help limit the amplitude. That
is, factors to help contain both uncontrolled growth and uncontrolled decline in the
sizes of the populations. In the course of further examining the model and its be-
havior, Talia devised a number of theories about the reason for the observed insta-
bility. She tested her theories through a process of successive revision, where she
would repeatedly devise a corresponding variation to her rule set, instantiate it in
NetLogo, and observe its effects.

Discussion: The danger of curve fitting. This activity of successive model
revision is useful in that it allows students experience in developing original hypoth-
eses, in formalizing them, and, to some degree, in testing them out. Modelers en-
gaged in the process of model revision need to be aware of a potential danger: In at-
tempting to alter a model to achieve a certain desired result, they run the risk of
“curve fitting.”That is, theymayendupwithamodel thatbears superficial similarity
to the system that they are trying to model but achieves this using an unrelated mech-
anism. This danger occurs whenever there is a target behavior for a model, and once
the targetbehavior isachieved, themodel isnot subjected to further testing inorder to
ensure a genuine correspondence. In general, embodied models are less prone to this
danger than classical models, for they model systems at two levels (underlying
mechanisms and global behavior) rather than just one (global behavior). This
two-tier approach is safer, because there are more constraints that the modeler must
satisfy (weelaborateon this in the“Discussion:Contrastingembodiedversusclassi-
cal assumptions” section). However, when modelers are not critical of the plausibil-
ity of their assumptions, the problem of superficial correspondence remains an acute
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danger. To avoid this hazard, students should always focus on the plausibility of the
model as a whole rather than only on its behavior. For example, when the results of a
model are not in line with expectations, a student should ask, what have I missed
about the behavior of the components?—not, simply, how can I change my model to
make it behave the way I want it to?

Researching the relevant biological literature. Research into scientific
literature is often a part of the debugging process. This research can help amend
any errors in a student’s knowledge of the phenomenon or reveal any important
facts that he or she might be overlooking. After experiencing difficulty devising a
rule set that would lead to stable oscillations, Talia decided to do some research to
determine the source of the problem. She discovered a substantial base of scientific
literature addressing experimental evidence and theory of two-species preda-
tor–prey systems. Notably, she read that when such systems were first created in
the laboratory by G. F. Gause (1934), the findings were just as with her NetLogo
model: Either the predators ate all the prey and then starved, or, under certain con-
ditions, the predators first died, and then the prey multiplied to the carrying capac-
ity of the environment (Gause, 1934). Gause was surprised at this result. On the ba-
sis of the work of Lotka (1925) and Volterra (1926), he fully expected such
two-species systems to be inherently stable. Talia thus learned, to her surprise, that
her model was not necessarily wrong at all—it was the classical Lotka–Volterra
model that was mistaken!

Talia’s model failed to reproduce the dynamics of predator–prey systems found
in nature, but it succeeded in predicting the dynamics that have been observed in
the laboratory. Her research uncovered two important differences between the nat-
ural and the experimental settings to account for this discrepancy. The first is the
lack of constraints on the growth of the prey population in the experimental set-
tings. In nature, the size and rate of growth of the prey population are constrained
by several factors, including limits on the food resources available to prey and lim-
its on their maximum density. The laboratory experiments, however, included
abundant food for the prey, and no other adversities in the system but the possibil-
ity of predation (Luckinbill, 1973). The second difference is the lack of environ-
mental complexity—the models and the experiments leave no place for the prey to
seek refuge and evade the predators, thus preempting the possibility of having
some subpopulations of prey surviving in different regions (Huffaker, 1958).

Discussion: Contrasting embodied versus classical assumptions. Talia’s
model did not produce the expected results, but it turns out that this is only because
her expectations were mistaken. The model omits any rules pertaining to environ-
mental conditions or limits on food for prey, and thus it correctly predicts the out-
come of the laboratory situation, which also omits these factors. The
Lotka–Volterra model does not include these factors either, and given this, we
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would expect it to offer predictions for the experimental condition, not the natural
condition. Indeed, Lotka (1925) and Volterra (1926) thought that their equations
constituted a mathematical proof that such two-species predator–prey systems are
inherently stable. Instead, this prediction has been shown false. Why might the two
models differ in this way?

One might initially think that the different predictions offered by these two
models can be attributed solely to skill (or luck) on Talia’s part. In fact, neither skill
nor luck can explain this alone—she tried very hard to achieve Lotka–Volterra-like
behavior using NetLogo but was unable to do so without significant changes to her
assumptions. These circumstances suggest that the factor that best accounts for her
success versus Lotka’s and Volterra’s failure in this particular case was her use of
embodied modeling tools.

Classical tools prevail in modern scientific practice because they provide, in
many cases, an extremely concise and accurate representation of a system. Never-
theless, these tools must be applied with great care. Compared with embodied
tools, classical tools make it much easier to model aggregate-level outcomes that
are biologically implausible. Recall that classical and embodied tools each incor-
porate assumptions at different levels—the former at the aggregate level and the
latter at the individual level. This is no small point. Whereas classical tools allow
us to make any aggregate-level assumptions we want, embodied tools make it natu-
ral not to make any aggregate assumptions at all. Instead, we must code our as-
sumptions at the individual level and wait to see what the aggregate-level conse-
quences of these are. Depending on the outcome we have in mind, it may be that a
reasonable individual-level rule set with this outcome simply does not exist.

It is still possible to make mistaken assumptions at the individual level, but there
are two reasons why these may be easier to detect in embodied models than in clas-
sical ones. First, embodied models offer more feedback to the modeler; there are
two levels at which to “debug” them, rather than only one level at which to debug
classical models. We can scrutinize both the plausibility of the individual-level as-
sumptions and the plausibility of the resulting aggregate-level outcomes. If either
seems suspicious, then we have a hint that we may be on the wrong track. With
classical tools, the only assumptions are, generally speaking, aggregate-level as-
sumptions, so new information is not typically gained from observing a model’s
outcome.

The second reason why mistaken assumptions may be easier to detect in em-
bodied models is that they take the form of rules for action. We have found that
most students are already accustomed to thinking in terms of such rules, simply by
analogy to their own experience. Hence, they come equipped with intuitive strate-
gies for understanding and developing embodied models. For example, students
will often try to make sense of a given rule set by assuming the perspective of the
individuals within the model and using their imaginations (see Papert, 1980). Clas-
sical models, in contrast, require students to think in terms of more abstract quanti-
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ties, such as rates and population densities. Although thinking in this mode may be
comfortable for professional mathematicians, it is quite foreign to most students
(see Stroup, 1996).

Discussion: Contrasting embodied versus classical explanations. Em-
bodied models have another advantage over classical models that is particularly
relevant in an educational setting. This advantage is that embodied models repre-
sent not only processes but also the mechanisms that underlie them. A classical
model describes no more than a quantitative pattern: the Lotka–Volterra model de-
scribes a set of two curves. The explanation that it offers for these curves could be
called a shallow one. It accounts for them by explaining that the birth rate of the
predators is proportional to the number of prey and that the death rate of the prey is
proportional to the number of predators. We use the term shallow because it is
never actually specified how this explanation relates to actual organisms. In fact,
this explanation can be induced just from looking at the population plots them-
selves—the very same plots we are trying to explain! Often when we ask for an ex-
planation, though, we are looking for an underlying cause. That is, not an account
of the pattern itself, but an account of the mechanism that gives rise to it. This deep
kind of explanation, often more satisfying to students, is precisely what embodied
models provide (Reisman, 1998; Wilensky, 1997b, 1999a). By bridging events
with their underlying causes, deep explanations enable students to form powerful
conceptual connections between their understanding of phenomena at different
levels (see Wilensky & Resnick, 1999). Currently, most topics in biology (and in
science, in general) are taught only at a single level. Be it the molecular, cellular,
anatomic, organismic, or ecological level, these topics tend to be conveyed and un-
derstood in isolation from one another. It is unfortunate that the relations between
these levels are not typically emphasized, given the possibility for topics at each
level to provide deep, mechanistic explanations for topics at adjacent levels up. For
example, students can apply their knowledge of molecules in order to make better
sense of cellular processes and can apply their knowledge of organisms in order to
make better sense of ecological processes. Not only do these applications provide a
stronger intuitive basis for students to understand each topic, but they may also
unify students’ understanding of biology as a whole. Though computer tools are
certainly not required in order to emphasize these conceptual connections between
topics—many teachers already stress such connections to great effect in their lec-
tures—our experience has shown NetLogo modeling to be a particularly effective
means.

Adding grass—greater complexity can promote stability. Both the clas-
sical and embodied models presented earlier require emendation to account for the
experimental findings. Many accurate classical models of predation have been de-
veloped since the work of Lotka and Volterra, but their mathematical complexity is
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beyond the scope of this article, and beyond the reach of most undergraduates (let
alone high school students). We now turn to an alternative rule set that Talia devised
to prevent her NetLogo ecosystem from destabilizing.

Talia learned that a major disparity between Gause’s experimental setup and the
natural case studies was the lack of constraints on the growth of the prey popula-
tion. In natural systems, the prey population is generally constrained by the
amount of resources available in the environment (e.g., food and living space) so
that there is effectively a carrying capacity—a maximum number of organisms that
can be supported—that limits the growth of the population. Gause’s experimental
setup and Talia’s model both overlook this and instead include no such limits to
growth. Prey within both systems have, at all times, ample food and ample space in
which to live. As it turns out, surprisingly perhaps, this condition makes a signifi-
cant difference to the stability of the system.

To impose a carrying capacity on the sheep population, Talia decided to modify
her model so that sheep would now be required to consume some limited resource
in order to survive. The new model would now include not only wolves and sheep
but also grass, which would “grow” back once eaten. She represented the grass by
means of patches that could either be green (i.e., grass is available for consump-
tion) or brown (i.e., grass has already been consumed). Once a patch would turn
brown, it would begin a countdown and only revert to green after some fixed inter-
val of time. There were then two ways the prey could die—either by being eaten or
by starving. These decisions resulted in an updated rule set for sheep and a new
rule set for grass:

Rule Set S2: sheep
at each clock-tick:
1. move randomly to an adjacent patch and decrease energy by E3

2. if on grassy patch, then eat “grass” and increase energy by E4

3. if energy < 0 then die
4. with probability R1 reproduce

Rule Set P1: patches
at each clock-tick:
1. If green, then do nothing
2. If brown, then wait X1 clock-ticks and turn green

After selecting appropriate parameters and running her revised model, Talia
found that her modifications had indeed brought about stable oscillations among
the wolf and sheep populations. In addition, the level of grass in the model would
oscillate as well. In examining plots of the population sizes over time, Talia noticed
that changes in the sizes of the wolf population and in the level of grass would be
roughly correlated, both varying as the approximate inverse of the number of sheep
(see Figure 4).
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In one sense Talia was surprised to find this model much more stable than the
last, because she had given sheep more ways in which to die. Oddly enough, by
limiting the resources of the sheep she had actually increased their chances of sur-
vival. On further reflection, Talia found this result—known in the literature as the
“paradox of enrichment” (Rosenzweig, 1971)—entirely reasonable. By not con-
trolling the amount of food available to the prey, the prey population can grow
without limit. This increase in prey eventually causes the predator population to
grow to unusually large levels, ultimately leading to a rapid and precipitous deci-
mation of the prey. This effect is known to occur in the natural world just as it does
in the NetLogo world. Accordingly, those involved in wildlife conservation efforts
now know that providing endangered species with an excess of resources may have
the counterintuitive effect of decreasing their numbers.

A further surprise for Talia was that the introduction of grass—an increase in
the complexity of the model—actually contributes to stability. This model, with its
multiple fluctuating and interdependent populations, is more reminiscent of an
ecosystem than the previous version. Contrary to engineering logic, the logic of
this model suggests that complexity and noise in a system can result in greater sta-
bility, not greater “chaos.” Modelers in biology, both amateur and professional, are
sometimes quick to abstract biological phenomena from the environments in
which they occur. Talia’s surprising result, however, urges us to remember that en-
vironmental and ecological context can play a significant role.

Spread Out the Sheep

Talia’s revised model contains three species (wolves, sheep, and grass), although
she originally set out to build a model of predation between only two (wolves and
sheep). She wondered whether she could find other rule sets that would achieve the
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FIGURE 4 A typical outcome from Rule Sets W1 + S2 + P1. pop. = population.
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same effect as the grass, without including any additional species. She considered
the role of grass in her revised model: It appears to ensure that only a finite number
of sheep can inhabit a given area. If there are too many sheep, then the grass will
run out and the sheep will starve, unless they move to another area that contains
grass. Thus, she conjectured, the role of the grass is to limit the sheep population
by placing a maximum density at which they can survive. Talia contemplated ways
in which to impose such a density restriction on her model, without adding a third
species. Another student, Benny, suggested that she could eliminate the grass and
instead include a rule that explicitly restricts any patch from being occupied by
more than one animal of a given species:

Rule Set S3: sheep
at each clock-tick:
1. move randomly to an adjacent patch which contains no sheep. If all adja-

cent patches contain sheep, remain in place.
2. if there is an unoccupied adjacent patch, then reproduce with probability

R1 and place the “offspring” into an unoccupied patch

Rule Set W2: wolves
at each clock-tick:
1. move randomly to an adjacent patch which contains no wolves. If all adja-

cent patches contain wolves, remain in place
2. decrease energy by E1

3. if on the same patch as a sheep, then eat the sheep and increase energy by
E2

4. if energy < 0 then die
5. with probability R1 reproduce

Benny and Talia hypothesized that the resulting dynamics of Rules W2 + S3
should look very similar to those of Talia’s three-species model, only without the
grass. In fact, when they first ran the model, they found its dynamics to be more
similar to those of the first model Talia had built. The behavior was unstable, inevi-
tably leading to the extinction of one or both of the two species, though it went
through more oscillations before doing so. It was only after they spent consider-
able time varying the parameters of the model that they discovered an additional
condition that promoted stability. They found that, by increasing the birth rates of
the wolves and sheep to high levels, the sizes of the two populations would, indeed,
continue to oscillate indefinitely.

Although W2 + S3 rule set results in stable behavior as the previous one did, a
plot reveals that its dynamics are actually quite different (see Figure 5). Compared
with the curves in the previous plot (see Figure 4), the two curves representing
wolves and sheep in this plot are much more regular, are of far greater amplitude,
and appear to have a different regular displacement from each other. It also shows,
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unlike the previous plot, that the wolf and sheep populations are regenerated at
each cycle from only a small number of individuals. Attention to the graphic win-
dow provides a dramatic manifestation of these differences; whereas the individu-
als in the previous model tend to be evenly dispersed and generally consistent in
number, individuals in this model tend be more clustered in various regions of the
window and subject to dramatic changes in number.

These two models are different, yet Talia could think of arguments in favor of
each. The latter could be favored for its relative simplicity, as it contains only two
different organisms (wolves and sheep) rather than three (wolves, sheep, and
grass). Furthermore, its requirement that only one organism of a kind should be al-
lowed per patch could be considered more realistic—why should an infinite num-
ber of organisms be allowed in a finite space? With the former model, Talia could
respond that the patches do not represent small spaces but larger areas into which
many organisms may fit. In addition, she could argue that this model’s lack of de-
pendence on a specific, and possibly unfeasible, range of birth rates makes it a
more plausible alternative.

How should Talia have chosen between these competing rule sets? Which one
should she have deemed correct? Her answer was that one cannot choose between
equally plausible rule sets so long as they both yield equally plausible results. She
came to see that her difficulty in choosing was not specific to this example or to
NetLogo modeling—indeed, it is inherent in the process of scientific modeling.
When multiple theories are equally compatible with existing knowledge, and nei-
ther theory is more predictive than the other (as in this case), then there will be no
direct way to arbitrate between them (Quine, 1960).

Discussion: Answers versus theories. Some teachers within the MSCP
project were initially uncomfortable with this indeterminacy and sought to hide it
from students. In our discussions with these teachers, we encouraged them to “dive
into” the indeterminacy. Not only is such indeterminacy fundamental to scientific
inquiry, but it may be valuable to students as part of their own thought processes.
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FIGURE 5 A typical outcome from Rule Set S3 + W2. POP = population.
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The modeling-oriented approach to learning biology shifts their goal from finding
the correct theory to finding a theory that is compatible with all the available evi-
dence. The significance of this shift is that students no longer need to search only
for unique answers, which may be true or false in themselves. They can spend their
time trying to compare theories against other theories. This shift of focus for the
student—from learning answers to assessing theories for themselves—is just the
kind of high-level skill called for by educational policymakers and industry leaders
at a time in which the turnover of scientific knowledge is so rapid (Chen, 1999;
Murname & Levy, 1996). Although content knowledge, or many of the “answers”
in today’s textbooks, is already out of date, the skill of assessing the validity and
plausibility of answers is not so easily made obsolete.

Before we move on to the next example, it is worth noting that the methods and
tools we have presented here are useful not only to students but to professional sci-
entists as well. The embodied approach, known to population biologists as individ-
ual-based modeling, has become an accepted methodology within the field. Cur-
rent individual-based models of predation are actually rather similar to the one we
have developed in this section. In some cases, these models offer greater predictive
accuracy than their classical counterparts (Huston et al., 1988; Judson 1994).

MODELING SYNCHRONIZED FIREFLIES

In the previous section, we showed how students can use NetLogo as a tool to
model and explore biological systems. In this section, we elaborate on the ways in
which students can, through the process of modeling, both learn about specific top-
ics within biology and use the NetLogo modeling language as a laboratory for ex-
ploring biological mechanisms. Our example follows the inquiry of an undergrad-
uate student, Paul, whose formal biology instruction consisted solely of high
school biology courses. Through his involvement with the MSCP project, Paul
learned of the phenomena of synchronously flashing fireflies and was intrigued.
The following paragraph provides some background.

For centuries, travelers along Thailand’s Chao Phraya River have returned with
stories of the astonishing mangrove trees that line its banks. Come nightfall, these
trees have been seen to flash brilliantly, on and off, intermittently illuminating the
surrounding woods and the water below. A closer look at this display, though, re-
veals that the sources of these rhythmic flashes are not the trees at all. Rather, it the
effect of thousands of individual fireflies inhabiting the trees, all pulsing their
lights in unison. Several species of firefly are known to do this, such as the South-
east Asian Pteroptyx malacae and Pteroptyx cribellata. When one such firefly is
isolated, it will typically emit flashes at regular intervals. When two or more such
fireflies are placed together, they entrain to each other—that is, they gradually con-
verge upon the same rhythm, until the group is flashing in synchrony (Buck, 1988).
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How do the fireflies achieve this coordinated behavior? When we think about
howbehavior iscoordinated inourdaily lives,we tend to thinkofschedulesandelab-
orate plans. Paul was perplexed at how creatures that seem to have little capacity for
such intelligent planning are nonetheless capable of such coordination. It was Paul’s
suspicion that there must be a simple mechanism behind the feat of the synchroniz-
ing fireflies. His goal was to try to understand this mechanism by building a model of
it in NetLogo. Paul decided not to begin his inquiry by doing an extensive literature
search. Instead, he was determined to see if, perhaps, he could find a solution on his
own. He began his task with no more than the description just given.

Approaching the Problem—Initial Assumptions

To begin, Paul made several working assumptions about these fireflies; he was pre-
pared to revise them later if necessary. First, he decided that the mechanism of co-
ordination was almost certainly a distributed mechanism. That is, the fireflies were
not all looking to a leader firefly for “flashing orders,” but rather were achieving
their coordination through passing and receiving messages from other fireflies.
From his previous experience with NetLogo, he had learned that not all coordi-
nated group behavior requires a purposeful leader to direct the group (see Resnick,
1996; Wilensky & Resnick, 1999). Examples such as the food-seeking behavior of
ants and the V-flocking of birds implied that some forms of group organization
could arise on their own. That is, as long as each organism follows a certain set of
rules, then the whole group would be likely to organize itself. Paul’s seeking out of
a distributed mechanism to explain firefly synchronization represents no small
achievement.13 Elsewhere (Resnick, 1996; Resnick & Wilensky, 1993; Wilensky
& Resnick, 1995, 1999), we have described a “deterministic–centralized
mindset”—a tendency of most people to describe global patterns as being orches-
trated by a leader giving deterministic orders to his or her followers. Paul’s experi-
ence in the MSCP project allowed him to overcome this tendency and consider
leaderless nondeterministic mechanisms for firefly synchronization. Given the
limited intelligence of individual fireflies, Paul surmised that just such a mecha-
nism probably underlies firefly synchronization behavior. A second assumption,
following the first, was that the system could be modeled with only one set of fire-
fly rules—that is, with every firefly in the system following the same set of rules.
Although he recognized that this assumption might have been too strong, just as
ant and bee populations do divide roles among their groups, he decided to first try
out the simpler hypothesis of undifferentiated fireflies. Yet a third assumption Paul
made concerned the movement of the fireflies—that it was not necessary to model
this movement as coordinated or governed by deterministic rules but rather it could
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13It is interesting to note that some of the first theories proposed to explain synchronously flashing
fireflies were, in fact, “leader” theories (Hudson, 1918; Morse, 1916).
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be modeled as random flights and turns. From experience with other NetLogo
models, he had come to appreciate the role of randomness in enabling coordination
(Wilensky, 1997b, 1999a). In a wide variety of domains, ranging from the move-
ments of particles in a gas to the schooling of fish and the growth of plant roots,
Paul had seen how stable organization could emerge from nondeterministic under-
lying rules. A final assumption was that the behavior of the fireflies could be mod-
eled in two dimensions.14

Beginning With a Simple Model

These assumptions left Paul with the task of finding a plausible set of rules for a
typical firefly. Rather than tackle this problem all at once, he decided it would be
easier to begin with a simpler version. He started by modeling a flashing firefly
that does not synchronize. Paul contemplated how to represent a flash using a
NetLogo turtle. The solution came naturally: The turtle would change its color
(say, to yellow) and then change it back. Now he needed a mechanism to regulate
when the flash would occur. He knew that if left alone, a firefly would continue to
emit flashes at a constant rate. Paul considered how to represent this simple behav-
ior within his model firefly; the behavior meant that every several clock-ticks, the
model should flash (change its color). For the flash to be seen, it would have to last
at least one clock-tick. To accomplish this goal, Paul decided to give the model
firefly a timer that would count down from a predefined reset-value (R)—once the
timer reached zero, the firefly would flash and reset the timer. In addition to the
flash-timer, Paul also included a rule to cause the model firefly to “fly” around the
screen. He assumed provisionally that a randomly generated flight path would be
sufficient. He wrote the following rule set:

Rule Set F1: firefly
to initialize:
0. set timer with random value between 0 and R

at each clock-tick:
1. if color is yellow (flash is on), then change color to black (flash is off)
2. if timer is zero, then change color to yellow and reset timer to R
3. decrement countdown timer by one
4. move randomly to an adjacent patch

194 WILENSKY AND REISMAN

14While the first three assumptions were derived, to a great extent, from Paul’s understanding of
plausible biological mechanisms, this last assumption was primarily driven by the limitations of com-
puter displays and of the NetLogo language itself. Because building a three-dimensional model was
more difficult in that version of NetLogo, Paul was, essentially, hoping that the three dimensionality of
the firefly world was not the key factor in enabling their coordination.
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After Paul debugged his NetLogo code, his simple model worked. The fireflies
would move around the screen and flash regularly, though of course they did not
yet synchronize their patterns.

Thinking Like a Firefly

Paul was left to ponder what sort of additional rules might cause the fireflies to
synchronize with each other. He considered the nature of coordination in general:
Could it ever be possible for distinct entities to coordinate their behaviors if they
were unable to communicate with each other? No—it seemed communication at
some level would always be necessary for any coordinated behavior to occur con-
sistently. He wondered what kind of communication mechanism might be used.

Often when building a model, students find it helpful to identify with the indi-
viduals within the model and to view phenomenon from their perspective. At this
point, Paul began to “think like a firefly.” He reasoned along the following lines: If
I were a firefly in that situation, what information would I have to go on? It would
be dark, and I probably would not be able to see the other fireflies. I probably
would not have much capacity for hearing or sensing the other fireflies either. I
would, however, be able to see their flashes. Perhaps, then, I could look to see who
else is flashing and then use this information to adjust my own flashing pattern.

Sorting Through Design Options

Paul concluded that the flashes themselves could serve to communicate the neces-
sary information, and he wanted to make this possibility more concrete within the
context of the NetLogo environment. He had already decided that in order to flash,
a firefly changes its color from black to yellow and back to black again. A firefly
must, then, be searching for other yellow fireflies. There are many ways that such a
search might be carried out in NetLogo, and Paul found that he had some choices
to make. The process of formalizing his model forced Paul to confront questions
that he had not already considered: How many other fireflies should a firefly look
at? At what distance could it detect a flash? How many flashes should it be allowed
to take into account?

Paul saw that there did not have to be any strictly correct answers to these ques-
tions, because they were questions about simulated fireflies, not actual fireflies.
For example, it would make little sense to ask how many patches away actual fire-
flies can see! Still, Paul thought that at least the issue of whether a model firefly
should survey the flashes of all or only a part of the population should have a clear
answer. For it would be possible to allow a model firefly to detect all flashes in the
population at a given clock-tick, but this would surely be granting the firefly too
much information; model fireflies should not be much more intelligent or percep-
tive than real ones. Because a real firefly would only be able to perceive a subset of
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the flashes in the population, Paul decided that the model firefly should scan only
adjacent patches to look for yellow fireflies. He began with a rule that allows a fire-
fly to sense other flashes within a radius of one patch. This decision only partly
simplified the question of what a firefly senses. Consider some statistics that a fire-
fly might collect about observed flashes: overall brightness (i.e., the combined
light of all observed flashes) during a given clock-tick, the number of distinct
flashes observed during a clock-tick, the number of clock-ticks between observed
flashes, increases in relative brightness from clock-tick to clock-tick, simply
whether or not any flash had been observed at all at a given clock-tick, and so on.
At this time, Paul did not have any principled way of choosing among these
data-collecting options, so he decided to proceed without committing to any of
them.

Given that a firefly has some mechanism for perceiving flashes, and perhaps for
analyzing this information in some way, the next question that Paul faced was what
to do with this information. In what way would a firefly alter its flashing behavior
in response to whatever had been observed? Paul tried to think of a simple situation
to make sense of the problem. Once again, he took the perspective of a firefly: Sup-
pose I perceive a clear pattern among the other fireflies—for example, everyone
else is already synchronized. Then, as long as we all have timers of the same dura-
tion, it would be simple to match this pattern. On seeing everyone flash, I would re-
set my timer as if I had flashed as well. Then my next flash would coincide with ev-
eryone else’s.

Having understood what to do at one extreme, Paul tried to work backwards: At
some point, before everyone else is synchronized, I must be confronted by a multi-
tude of unsynchronized flashes. Then what would I look at? To what would I reset
my timer? Paul thought again of all the different ways that a firefly might analyze
observed flashes and all the different timer-reset rules that must be possible. Paul
had many ideas, but he felt that he needed more information to continue.

Researching the Relevant Biological Literature

Notice how far Paul was able to get without reference to detailed information about
the real-world phenomenon. From his initial goal to model “whatever” was going
on, by “thinking like a firefly,” he was able to reason to this point where he was
seeking a very particular sort of algorithm. It might have been possible for some-
one to take this line further, but to decide among some of the options he had left
open, Paul felt a need to gather information about the behavior of real fireflies
(e.g., Does the interval between successive flashes vary from firefly to firefly?
How far can an actual firefly see? How many flashes can it take into account? What
is the timer-reset rule?).

At this point, Paul did some research into the scientific literature. His own in-
vestigation had not answered all his questions, but it had given him a sound context
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from which to understand and interpret the existing research. In looking through
the literature, he was not reading a teacher’s assigned material but rather engaging
in his own research to answer questions of his own devising. Paul located several
journal articles to help answer his questions. He found out the following (Buck,
1988; Buck & Buck, 1968, 1976; Carlson & Copeland, 1985):

1. Fireflies do indeed have internal “timers” to regulate the period of flashing
and are known to entrain their timers to observed rhythms.

2. The only information needed for entrainment is that of other flashes.
3. There are many species of synchronizing fireflies, all with different en-

trainment and oscillation characteristics.
4. Some species are able to adjust the period of oscillation; others are not. For

the latter, the period of oscillation tends to remain highly constant across a
population.

5. Different methods of synchronization are seen across species. Two main
mechanisms are phase delay and phase advance synchronization:
(a) Phase-delay: When a firefly perceives any flash, it delays its next flash

so that it will occur one period after the perceived flash. This strategy
is known to be used by the Southeast Asian fireflies of the Pteroptyx
genus.

(b) Phase-advance: When a firefly perceives any flash during a short win-
dow of time before flashing, it flashes immediately and starts a new
period immediately thereafter. This strategy is known to be used
among species that tend to synchronize only rarely and transiently,
such as the American Photinus pyralis.

Paul was pleased to discover that many of his design decisions were biologi-
cally plausible, such as his focus on a distributed synchronization mechanism, his
use of timers to control flashing, and his decision to allow timers of the same dura-
tion across the population. The synchronization mechanism he had thought of ear-
lier appeared to correspond to the phase-delay mechanism from the text, although
he was surprised to learn that a firefly needs to see only one flash, any flash, to re-
act. His next step was to extend his existing model in order to determine whether
this would really work.

Modeling Phase-Delay Synchronization

Paul decided to model the phase-delay mechanism first. The research did not turn
up any information on the maximum distance within which a firefly can perceive
other flashes, and therefore, Paul had to decide on this matter on his own. For rep-
resentational simplicity, he chose to allow fireflies to sense other fireflies within a
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radius of one patch. Incorporating this information in his earlier model resulted in
the following rule set:

Rule Set F2: phase-delay firefly
0–4. Identical to rule set F1
5. if there is a yellow firefly within one patch, then reset the timer to R

Paul ran Rule Set F2 using 1,000 fireflies and was amazed to see the model fire-
flies converge on a single rhythm before his eyes. He also set up a plot to display
the number of fireflies flashing at a given time (see Figure 6).

Modeling Phase-Advance Synchronization

Next, Paul wanted to try out the phase-advance strategy. This attempt required
more sophistication, because a phase-advance firefly will only adjust its timer
during a short window before its flash. Paul amended F2 to account for this time
window:

Rule Set F3: phase-advance firefly
0–4. Identical to rule set F1
5. if there is a yellow firefly in a neighboring patch, and I am within W

clock-ticks of my next flash, then reset the timer to R

Indeed, Paul found that this strategy was not as effective as phase-delay synchroni-
zation—when he ran this rule set (see Figure 7), he did not observe synchroniza-
tion at all! It was only after much experimenting that he discovered a variant of this
rule set (see F4) that did produce synchrony, although the synchrony took much
longer to develop and was not as precise as with Rule Set F2 (see Figure 8). Rather
than flash in perfect unison, the fireflies would all flash within an interval of two or
three clock-ticks.
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FIGURE 6 Typical plot of the num-
ber of flashes in a firefly population at
a given time under Rule Set F2.
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Rule Set F4: phase-advance firefly
0–4. Identical to rule set F1
5. if there are at least two yellow fireflies within one patch, and I am within W

clock-ticks of my next flash, then reset the timer to R

Although he had managed to achieve synchronization using a phase-advance
mechanism, Paul was uncomfortable with this result as he had done so by means of
an ad hoc change to his model. He wondered whether, perhaps, this result pre-
dicted the behavior of actual fireflies, or whether it was a just an artifact of the rep-
resentational decisions he had made.
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FIGURE 8 A typical result of running Rule Set F4. Fireflies eventually synchronize, but not
with the same speed or precision as in Rule Set F3.

FIGURE 7 A typical result of running Rule Set F3. Even after 20,000 clock-ticks, no syn-
chrony emerges.
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Paul tried a number of further variants to Rule Set F4 to investigate other possi-
ble flash-reset mechanisms. Among them was one where he omitted the require-
ment for a flash-window (W). He quickly discovered why this window was neces-
sary: Without it, the fireflies would persistently reset each other’s timers, and there
would be no interval between flashes.

Further Questions for Research

Paul was encouraged by the initial results of his research and was left with new
questions to investigate. For example, he was intrigued by the ability of some fire-
flies to adapt not only the timing of their flash, but also the duration between
flashes. The publications he had looked at gave no complete theory of how this
could be done. He was also interested in customizing his model to reflect the idio-
syncrasies (e.g., multiple consecutive flashes, responses to irregular stimuli) of
particular species, such as Pteropox malacae and Photinus pyralis. Though he be-
gan his inquiry with only a single question in mind, he found that his questions
multiplied as his research continued.

Discussion: The Model Testing Process

What makes a model a scientific model is that it has been tested against whatever
system it was designed to represent. At this point, Paul’s phase-delay model was
successful in having the model fireflies collectively synchronize their flashing pat-
terns, but the correspondence between this model and reality still had to be tested.
Indeed, Paul went through such a process of testing and eventually was convinced
of the soundness of his modeling decisions. In this section, we remark on his expe-
rience frame a discussion about the process of testing and evaluating NetLogo
models in general.

Why bother testing at all? In one sense we know that Paul’s model works, for
the model fireflies do indeed synchronize. However, we have already discussed the
dangers of models that bear only a superficial correspondence to the phenomena
being modeled, and in Paul’s case there is certainly such a danger. Perhaps there
are many different algorithms that will lead to synchronization. How do we know
that Paul’s model corresponds in a meaningful way to the behavior of real fireflies?
We have some indication, because journal articles have confirmed many of Paul’s
assumptions. Still, Paul may have made errors in coding his model, he may have
misinterpreted the literature, and, of course, the literature itself may have been in-
correct. Ideally then, we would like more evidence that the model is sound. To
evaluate a model, a modeler must critically analyze the content and output of the
model along several dimensions. These include the soundness of the model’s un-
derlying assumptions, the robustness of its output, and its predictive capacity. Let
us consider each of these in turn with respect to Paul’s model.

200 WILENSKY AND REISMAN

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
S
a
n
 
D
i
e
g
o
]
 
A
t
:
 
1
9
:
4
0
 
1
 
F
e
b
r
u
a
r
y
 
2
0
1
0



Continually evaluating the plausibility of the background assumptions is a
modeler’s first line of defense against specious models. Whenever design deci-
sions are made, the modeler should be aware of the ways in which these decisions
may detract from the realism of the model. He or she may then make a deliberate
choice to stay with these decisions, reject them, or, perhaps, to wait until later to
choose. For example, when Paul decided that all fireflies would follow the same
rules or that the relevant behavior could be adequately modeled in two dimensions,
he made these decisions provisionally. He was aware of the conceptual jump he
had made and was prepared to retract these assumptions if necessary. Any model
will take representational liberties. The important thing is to be aware of these, and
to try and discern whether and how they affect the plausibility of the model.

Another way to evaluate a model is to consider its “robustness.” A robust model
will yield consistent results, even when we introduce noise, adjust the parameters,
or even effect small changes to the background assumptions. If we do obtain con-
sistent results under these conditions, we have evidence that our model is not
overly sensitive to our assumptions or chosen parameters—some of which may be
arbitrary or mistaken. We may reasonably suspect a nonrobust model of being im-
plausibly contrived, or curve fitted (see the earlier “Discussion: The danger of
curve fitting” section). It was on these grounds that Paul had been suspicious of his
phase-advance model. He wanted to further test his phase-delay model along the
same line. Paul figured that a robust solution to the synchronization problem
should be able to hold up under nonideal, or “noisy,” conditions, where other fac-
tors might interfere with the phase-delay algorithm. One way that he tested his so-
lution was to introduce several “blind” fireflies that would not synchronize with
the rest but would still flash. When he tried this, he found that the population took
much longer to settle into a stable pattern of synchronization. Initially, only small
clusters of synchronization would transiently form and then break up again within
the population (see Figure 9). Paul was pleased to find that the algorithm did hold
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FIGURE 9 Clusters of synchroni-
zation within a population of 1,000
fireflies.
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up under this test condition. He then found in the literature that this local clustering
had even been observed in natural Pteroptyx populations (Buck, 1988).

Of course, the principal way that scientific models are evaluated is by determin-
ing how well they can be used for prediction. By this, we mean that the model an-
ticipates some result that is approximately true of the system being modeled, and
that did not itself factor into the development of the model. New data against which
to compare a model might be collected in the laboratory or from nature, though re-
search in journals and other texts will often provide enough data for the purposes
of students. The predictions that student models may offer for this data are typi-
cally of a qualitative rather than quantitative nature. In Paul’s case, for example,
there was the unexpected result from the “noisy” fireflies. His later discovery that
this is actually in accord with real firefly behavior constitutes an item of predictive
evidence in favor of his model. Ideally, a student would attempt to find and amass
as much such evidence as possible.

Testing can take place after students have developed their initial models, or, of-
ten, it will be concurrent with the process of development. All along, students al-
ways have the options of either concluding the modeling process or going back and
revising their models in light of what they have discovered. In the end, even after
students have critically evaluated their models, they must (once again) confront the
inevitable indeterminacy that surrounds the testing of scientific theories. Theories
are never conclusively proved (Popper, 1959). Accordingly, students should not
walk away from the modeling process believing themselves to have found the cor-
rect solution. Rather, they should leave with an awareness of the ways that their
model both does and does not reflect the system they set out to capture.

Critical thinking about modeling does not come easily to many students. In the
MSCP project, we have observed that for many students NetLogo modeling is their
first experience where such thinking—the sort that underlies experimental sci-
ence—is demanded. We have found that students engaged in NetLogo modeling,
through revising, assessing, and successively refining their models do, indeed, de-
velop a propensity for critically evaluating their models. This propensity, however,
is hard won. Typically, it is only after a good deal of guidance that students will be-
come critical of the representational decisions they have made. Further research is
needed on how to help students to move beyond good model building to good
model critique. In our concluding remarks, we argue that significant learning oc-
curs even when students do relax the requirement of criticality.

Further Reflections: Learning Through Building

Let us call this the engineer’s dictum: If you can’t build it, then you don’t under-
stand it. Our approach of modeling underlying mechanisms takes the engineer’s
dictum seriously. To model a system, it is not sufficient to understand only a hand-
ful of isolated facts about it. Rather, one must understand many facts and concepts
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about the system and, most important, how these relate to each other. The process
of modeling is inherently about developing such conceptual relations and seeking
out new facts and concepts when a gap in one’s knowledge is discovered.

We have seen how Paul came, through building, to understand the concept of a
simple circuit capable of entrainment. In science and mathematics, such circuits
are known as oscillators, and networks of such circuits are known as coupled oscil-
lators. As it turns out, such oscillators underlie not only firefly synchronization but
also a wide-range of phenomena throughout biology that exhibit synchronization
behavior without any centralized control. Among other phenomena, oscillators are
involved in acoustic synchronization between crickets, the pacemaker cells of the
heart, neural networks responsible for circadian rhythms, insulin-secreting cells of
the pancreas, and groups of women whose menstrual periods become mutually
synchronized (Mirollo & Strogatz, 1990). Though Paul’s goal was to learn about
fireflies, he had come to understand a concept that has applications far beyond.

CONCLUDING REMARKS

The embodied modeling approach we have presented and illustrated herein makes
practical a modeling-centered biology curriculum in secondary and postsecondary
contexts. By removing the barriers of formal mathematical requirements, it en-
ables students to meaningfully engage the dynamics of complex biological sys-
tems.15 They are able to construct models of such systems, reason about the mech-
anisms that underlie them, and predict their future behavior. Because they are able
to use their knowledge of the individual elements in the system to construct their
model, they are provided with an incremental path to constructing robust models.
When their knowledge of the individual biological elements is combined with their
knowledge of their own embodiment, their own point of view, they are enabled to
think like a wolf, a sheep, or a firefly.

Thinking Like a Scientist

The examples described here have, we hope, demonstrated the power of the em-
bodied modeling approach to enable students to construct robust models and en-
gage in exciting scientific inquiry. For some readers, there may still remain the
question of why any kind of modeling approach should be given a significant share
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15Elsewhere (Wilensky, 1995, 2001) we have argued that computational modeling approaches are a
new alternative form of mathematics—a new mathematics for a new way of describing, representing,
and investigating scientific theory (see also Abelson & diSessa, 1981; Noss, 1988; Noss & Hoyles,
1996; Papert, 1972, 1980).
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of classroom time. We conclude by mounting a defense of a general modeling ap-
proach in the science and mathematics classroom.

The modeling-based classroom is dramatically different from most venues of
classroom practice. Rather than passively receiving an authority’s explanation of
science and mathematics concepts, students seek out and consider these concepts
on their own. Rather than carry out the directions for predetermined lab studies,
students engage in new investigations. What underlies this approach is our deep
conviction of the value of reasoning about scientific order. In both the predation
and firefly examples presented in this article, students were encouraged to reason
through a problem, creating and testing their own theories and hypotheses, before
reaching for the established literature.

A critic of our approach might argue that students may be prompted to develop
and teach themselves false models. We have already emphasized the importance of
encouraging a critical analysis of all models to avoid such false solutions. How-
ever, we acknowledge that given the theoretical level at which we encourage stu-
dents to consider problems, it is not unlikely that students will indeed develop
models that are at variance with natural systems. It is important to note that we do
not believe that this is a problem. Let us explain.

Methodology aside, educators differ about the goals of secondary and under-
graduate science education. Some common views are (a) to convey knowledge
of specific scientific facts and techniques, (b) to foster in students a general un-
derstanding of and appreciation for the world around them, (c) to train students
in tools and approaches that will prepare them to learn about and assess scien-
tific theories they have not previously encountered, and (d) to prepare students to
develop their own theories and conduct their own scientific research. No doubt,
educators may value several or all of these objectives; indeed, we believe they
are all important. The distinctive form of our approach, which emphasizes inde-
pendent consideration of scientific topics, responds to our belief that none of the
aforementioned objectives are adequately met by the standard science curricu-
lum alone.

Very often, science classes effectively amount to tests of students’ abilities to
memorize large numbers of facts. Sometimes, the classes manage to emphasize an
intuitive understanding of these facts within a larger context. However, rarely are
the other two objectives even attempted, let alone emphasized; general scientific
methods and processes of thinking are generally overlooked. This omission is due
to many different factors, including the difficulty in constructing tests that assess
such processes, the pressure to achieve broad coverage of the curricular topics, and
the discomfiture caused to teachers and school administrators by the change in
teacher and student roles in a modeling-centered curriculum. In our view, teaching
scientific facts without placing these within a larger context—which includes con-
veying how this knowledge was established and how new scientific information
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comes to light—misses the point. This miss is why, above all, the modeling ap-
proach we have presented here emphasizes a process rather than a result. Regard-
less of one’s educational priorities, it is a mistake to assume that one can achieve
the first objective listed while dropping the last three of these objectives. Particular
facts and theories must have a context of processes and beliefs to be integrated with
existing knowledge and retained. This sense-making context is all the more impor-
tant for those students who will not continue in the study of science and for whom
the isolated facts remain “one-night stands.”16

We can now return to our assertion that we do not take the possibility of stu-
dents teaching themselves false models to be a major problem. We have argued
here that it is more important to convey to students general methods, notions,
and processes of thinking than it is to emphasize specific theories—at least at the
secondary and early undergraduate levels. A consequence of this decision is that
we have to relax (not drop) our insistence on correct answers. Students will not
learn to be rigorous scientists overnight. They will generally need to go through
a process of exploring and experimenting with the techniques and ideas we have
discussed before these become natural to them. Yet, if we penalize them each
time they express ideas that are strictly incorrect, we are sure to stifle their moti-
vation for such creative exploration.

Our approach promotes several processes of reasoning that are central to sci-
ence: developing original hypotheses, formalizing ideas, researching existing so-
lutions, and critical analysis of results. We believe that experience with these
processes will be of significant advantage to all students as they seek to under-
stand science and, more generally, the world around them. Few students will go
on to become scientists. To the ones that do not, we, as educators, owe more
than just an introductory glimpse of current theories—we owe them the tools
with which to appreciate scientific evidence and to engage in scientific inquiry
for themselves. To the ones that do go on to become scientists, we owe a frame-
work within which they will be better prepared to absorb and appreciate the
myriad facts they will encounter for years to come. Thus, it is our hope that the
approach we are developing will serve as a framework for all students. We be-
lieve it is critically vital for both future scientist and future nonscientists–citizens
to be able to work and think like scientists.
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16Deanna Kuhn (1993) made this point eloquently: “Scientific thinking tends to be compartmental-
ized, viewed as relevant and accessible only to the narrow segment of the population who pursue scien-
tific careers. If science education is to be successful, it is essential to counter this view and establish the
place that scientific thinking has in the lives of all students. A typical approach to this objective has been
to try to connect the content of science to phenomena familiar in students’everyday lives. An ultimately
more powerful approach may be to connect the process of science to thinking processes that figure in
ordinary people’s lives” (p. 333).
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