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Abstract: The paper is a case study of technology-facilitated argumentation. Several graduate
students, the first four authors, present and negotiate complementary interpretations of a diagram
generated in a computer-simulated stochastic experiment. Individuals use informal visual
metaphors, programming, and formal mathematical analysis to ground the diagram, i.e., to achieve
a sense of proof, connection, and understanding. The NetLogo modeling-and-simulation
environment (Wilensky, 1999) serves to structure the authors’ grounding, appropriating, and
presenting of a complex mathematical construct. We demonstrate individuals’ implicitly diverse
explanatory mechanisms for a shared experience. We show that this epistemological diversity,
sometimes thought to undermine learning experiences, can, given appropriate learning
environments and technological fluency, foster deeper understanding of mathematics and science.

Introduction
Computers can be powerful tools for learning mathematical concepts. One powerful way to use computers

for learning mathematics is through the exploration and construction of computer-based mathematical models and
simulations (Feurzeig & Roberts, 1999; Jacobson & Kozma, 2000; Wilensky, 1997). However, users’ learning
experiences through computer-based modeling, we believe, can be greatly amplified beyond running and observing
simulations—learners can engage in modes of discourse that challenge the veracity of and assumptions underlying
these models and act on these challenges. In order to take greater advantage of the computer medium, we contend,
learners should engage in technology-supported argumentation, including questioning the assumptions of existing
models and authoring their own simulations. This contention, inspired by Papert’s constructionism (1991), is
developed in this paper through a descriptive and collaborative introspection into a rich and authentic learning
experience we shared through critiquing each other’s computer-based design work. We attempt to demonstrate the
thought processes motivating individuals engaged in creating (“programming” (1)) mathematics models. In the
context of model design, we construe programming not as an end in itself but rather as a natural rhetorical mode of
expression that harnesses the computer—the ‘protean machine,’ as Papert (1980) calls it—in extending, elaborating,
and grounding mental simulation into the public space, a mode that is available to computer-fluent individuals and
should be made available to all learners.

Our approach builds upon the literature that advocates that students construct mathematical understandings
through engaging in activities within “mathematical environments” (Noss & Hoyles, 1996; Papert, 1991; Piaget,
1952). Computer simulations afford opportunities for such contextualized activity (Feurzeig & Roberts, 1999;
Jacobson & Kozma, 2000; Wilensky, 1993, 2001) in collaborative learning environments where students can
‘connect’ their qualitative intuitions to formal quantitative articulation such as graphs and formulae. Collaborative
learning differs from exclusively-individual learning in that collaboration constitutes a catalyst for argumentative
rhetoric, through which individuals articulate hitherto implicit interpretive models (Cobb & Bauersfeld, 1995;
Edelson, Pea, & Gomez, 1996; Guzdial et al. 1997; Stahl, 2000). Also, there is great heuristic–didactic value in
shifting between different interpretive models for making sense of observed phenomena and between isomorphic
mathematical representations such as diagrams, graphs, and equations (Post, Cramer, Behr, Lesh, & Harel, 1993). A
collaborative phenomenological–mathematical negotiation affords opportunities for formulating and bartering
interpretive models (Abrahamson, 2002).

This paper takes the narrative form of first presenting four different interpretations of a simulated
probabilistic phenomenon authored in the NetLogo (Wilensky, 1999) modeling and simulation language as part of
design research carried out at CCL (The Center for Connected Learning and Computer-Based Modeling) at
Northwestern University. Individual contributors—the first four authors, graduate students in Uri Wilensky’s
research group in the Learning Sciences and Computer Science departments—explain the experiential grounds for
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their respective personal interpretations. These personal introspective explanations begin from idiosyncratic
constructions of the probabilistic situation, including cogent associations from prior knowledge that these
individuals bring to bear in their sense making. Through social interaction revolving around the probabilistic
simulation, these individual interpretations feed off each other, converge using a single representation of the
mathematical problem, and are woven into an inter-subjective co-constructed account of the phenomenon. In that,
the narrative form of this paper is useful because it conveys an authentic collaborative learning process, thus giving
content to and mirroring the argument we develop. The narrative culminates in a conversation through which we
came to see the correctness, the value, and the problematics of each other’s points of view (2). In the discussion, we
collectively reflect on our collaborative learning to argue for the centrality of computer simulation as a vehicle of
proof. At the same time, by exposing the disparity between our mathematical assumptions relating to a single
representation, we critique the epistemological basis of the ostensible agreement we had achieved.

The Mathematical Object
Imagine the following computer simulation. Three “boxes” are set in fixed positions in a row. At the press

of a button, all three boxes randomly paint themselves either ‘green’ or ‘blue.’ Thus, the result of the compound
event is either green-green-green, green-green-blue, green-blue-green, etc., with a total of 8 different permutations.
Now, further imagine that a user creates a “secret key,” say ‘blue-green-blue,’ and then the computer searches for
this key. The computer’s “unintelligent” search algorithm is to simultaneously paint each of the boxes either green
or blue, randomly, and hope for the best. An event—the computer’s single guess—can be either a “failure” (key was
not matched) or “success” (key was matched). If events are recorded as a list of failures and successes, with each
successive event added on at the end of the list, they form a string of length n, where n is the total number of events
(failures + successes), e.g., ffsffffsfsfssffsffffffsfsffsssfsffsfsffs (3). The computer-screen interface between the user
and the code affords a dynamic perceptual experience that is richer than just pressing a button and immediately
receiving an output string of events or just a single processed value. Also, the parameters by which experimental
data are processed may vary, and, in fact, once data are collected, different experiments may dictate different
analyses of the same set of outcomes, that is, different ways of parsing and quantifying the string of failures and
successes. For instance, one may run the boxes experiment in order to evaluate the frequency of successes, but one
might look at the same set of data and wonder about the average number of trials from one success to the next. Each
analysis can be represented in a different type of graph. As it was, the authors discussed a graph representing the
frequency distribution for number of attempts until success (Figure 1a, below).

 
Figure 1. Two graphs of the same data-set of outcomes in a probability experiment: (a) on left, a “ski slope” graph

representing the frequency distribution for the number of attempts until success (number of trials until you match the
key successfully); (b) on right, a bell-shaped graph representing the number of successes per sample (number of

correct matches per fixed-sized sample). Some of the authors expected the attempts-until-success graph to be bell-
shaped, too, and this expectation provoked the modeling and argumentation reported in this paper.

These distinctions between the mathematical constructs and the metaphorical objects and between different
models of the same mathematical data as well as issues of how representations inform interpretations of data all
usually remain opaque, because learners have no reason to probe their implicit understandings. We had operated
under the implicit assumption that once a mathematical construct is instantiated in both a metaphor and a graph that
represents the accumulating outcomes of the probabilistic experiment, there would not be much room for individual
interpretation—ostensibly, the constructivist ultrasound would not reveal interpersonal differences. But we were
wrong. The following begins by describing the interaction that instigated the debate, and then we outline what it
took for each student to connect to—to really understand—the stochastic experiment. The Rashomon structure of
the texts enables a conveying of authentic learning experiences of individuals within a collaborative learning space.
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Exposition
During a design-team meeting, Dor demonstrated how a computer-simulated stochastic experiment he had

authored resulted in a bell-shaped histogram. Dor’s approach to revealing the probabilistic traits of the model had
been to use sampling. That is, Dor’s model parsed the string of individual outcomes into substrings of fixed length,
counted up the successes in each of these substrings, and displayed the successes-per-sample as a histogram,
which—as it happened—recurrently grew into a bell-shaped curve. The sample size in this experiment was 100
attempts. Ben, Josh, and Matthew all expressed curiosity during the meeting as to whether or not collecting large
samples is necessary for demonstrating the probabilities inherent to the model. In particular, they questioned why
one could not simply collect samples of unit-size one (i.e., individual guesses) and count the number of single-guess
samples until each successive success. Ben and Matthew were convinced that ‘successes-per-sample’ would usually
mirror ‘samples-per-success.’ Perhaps the implicit assumption here was that since the search algorithm itself would
not be changed, and since the variables are held constant—same number of boxes, colors, and total number of
attempts—the graphic representation, too, should remain unchanged. Matthew and Ben expected these reciprocal
ratios (samples/success   successes/sample) to correspond with simple symmetry transformations of the
corresponding distribution curves. Dor explained that he had tried using this attempts-per-success technique and had
been frustrated with its results; that the graph produced resembled a ski-slope that had its peak at success on the first
guess and then decreased exponentially as the number of guesses increased. Josh, Matthew, and Ben all argued that
their method was identical to Dor's sampling technique except that their method curtailed each search at the first
success to create variably sized samples that contained single successes (4). That is, instead of taking many samples
of fixed size and counting up the varied number of successes in each sample, they suggested counting up a fixed
number of successes—1—within necessarily variably-sized “samples.” A graphic representation of the distributed
frequency of such sample sizes, they argued, should therefore be identical to the bell-shaped distribution that Dor's
technique discovered. Uri recommended that they think about “independence.” About this time, the meeting ended.

Dor’s World
It’s not that Dor didn’t understand the graph. He was perfectly happy to believe that the code he had

authored himself indeed results in that graph—“This is what you get when you run this stochastic experiment.” But
then his peers, who were witnessing the graph for the first time, challenged it, saying it should be bell-shaped and
not shaped like a ski-slope. Perhaps if they saw the graph in a textbook they would not have been so critical, but
they were all sufficiently versed in programming so as to appreciate that Dor may have erred in attempting to
formulate computer procedures that emulate the experiment. Spurred by their challenge, Dor had to defend and
warrant the graph as a valid representation of his experiment, so he searched for a means to connect to the graph.

Dor typically grounds mathematical constructs in real-world objects and situations (see Abrahamson &
Wilensky, 2003). So he struggled to find a situated model that would explain the logic of the 1/x –type curve of the
attempts-per-success frequency distribution, and specifically its non-normal shape (5). Dor came up with the
“Sticks” model, as follows: imagine that each per-success string of outcomes is a stick of 3, 5, 2, etc. units of length,
making up a  concatenat ion  of  s t icks  wi th  the  to ta l  length  of  40  uni ts :
ffs–ffffs–fs–fs–s–ffs–ffffffs–fs–ffs–s–s–fs–ffs–fs–ffs (the same string of data from the Mathematical Object section).

So now the stochastic model that had generated strings of outcomes occurring over time was translated into
strings of substantive material extending in space—sticks. From the perspective of the Sticks model, the question of
the 1/x -type curve becomes: why is it that if we collect sticks of total length N (here, 40) we typically get a greater
number of shorter sticks as compared to longer sticks? If we were looking at this string of f’s and s’s (see above) as
one of many different possible outcomes of an event of length 40 attempts, we could ask: how many different
repetition permutations of stick lengths 1 thru 40 are there? Answering this question mathematically could determine
whether or not most collections of addends of 40 do indeed contain more 1-sticks than 2-sticks, more 2-sticks than
3-sticks, more 3-sticks than 4-sticks, etc. That would explain why one gets 1/x -type curves and not bell-shaped
curves on numerous runs of the “green/blue boxes” model. Stripping this down to bare numbers, we are asking the
following: given an inexorable pool of numbers 1 thru 40, how many different arrangements can we form under the
condition that each sums up to 40?

The first observation is that there is just a single arrangement for a single stick of length 40: just
that—{40}, a single stick of length 40 units. There are 2 arrangements for a stick of length 39 units: {39 + 1} and {1
+39}. For a stick of length 38 there are 5 arrangements: {38, 2}, {2, 38}, {38, 1, 1}, {1, 38, 1}, and {1, 1, 38}. And
so on. Thus, the shorter the stick, the more different arrangements it may fit into. So, in a random bounded string of
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total length 40, the shorter the stick, the higher its chance of being included in the concatenation of sticks. Moreover,
the shorter the stick, the more frequently it is expected to appear in a single random string. This explains the inverse-
exponential decrease from 1 through 40 that gives rise to the 1/x -type curve. Much later, Dor learned that he had
“discovered” partition-function distributions…(6)

Dor created a NetLogo model to simulate his stick gathering so as to have empirical evidence to support the
viability of his Stick interpretive model of the graph (Figure 2a, below). He designed the simulation so that it would
plot as a histogram the frequencies of each stick over 10,000 runs of the model, in each of which the model added up
to a specified total (40 in the current example). When we run this model over and over, we receive different specific
numbers in the list but the general frequency distribution, expressed in the histogram shape, remains constant. To all
appearances, this is precisely the shape we receive when plotting the attempts-per-success data from a single
extended run of the “green/blue boxes,” so Dor felt that he now truly understood the graph (7).

Figure 2. (a) Dor’s Stick model implemented in NetLogo. Note the similarity to Figure 1a.
(b) Ben and Dor’s representations of search-algorithm expectancies, set to 3 boxes (P) and 2 colors (C)

Ben’s World
In preparing for the original meeting, Dor had consulted with Ben, who wrote an analysis of the

computational complexity of the problem, which Dor then implemented in his presentation to the research group, in
the form of a NetLogo model (see Figure 2b, above). The model examines how the problem’s sample space grows
with the number of boxes and colors. In performing this analysis, Ben discussed the expected performance of several
guessing strategies that one (or one's computer) could use to find a secret key. His analysis relied upon long run
averages over large numbers of keys or upon non-random guessing patterns that made guesses non-independent
(whereas Dor's scheme's random guessing made each guess's probability of success independent). This work
allowed Ben to have a set of very strong beliefs about the properties of the model, which were then tested and
refined over the course of discussions about the model. However, neither Ben nor anyone else in the group
immediately realized that Ben used a strategy wherein guesses were non-independent, whereas Dor’s model treated
guesses as independent.

Matthew's World
Matthew concurred with Ben’s analysis of the problem space and embraced this analysis in his own attempt

to rethink the search algorithm. While a brute-force key search mapped well onto the problem, a proof of the curved
distribution seemed remote. Matthew decided that one can guess randomly in the search space to find a “success,”
but without any history or pattern to these guesses, the searcher is doomed to repeat “failure” guesses randomly and
indefinitely. How could one make an informed guess about the running time of the search through the key-space if it
was exponential and memory-less? It would take a very long time to find successes in any large search space.

Ben and Matthew Together
Ben and Matthew initially thought that the until-success approach would produce a bell-shaped curve (see

Figure 1b). That is, they expected a run of attempts-until-success of length ‘mean - 1’ to be equally likely as a run of
length ‘mean + 1.’ This sense of balance can seem correct at first, when you reason according to the following
equations that convey a sense of ‘equivalence’: If you are randomly guessing a number between 1 through x, you are
no more likely to guess any of these numbers—they are all equally likely, with a probability of 1/x (8). However, the
surprising fact is that this line of reasoning does not imply that repeated attempts-until-success will result in an even
or a symmetric distribution of guesses. Much of the confusion, we later realized, was embedded in the classic
difference between independent and conditional probability—a difference we had all studied yet were not attuned to
apply.

Ben and Matthew, dissatisfied with the lack of resolution at the end of the meeting, began writing a
NetLogo model that implemented their attempts-until-success algorithm. The NetLogo model ran according to the
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following simple algorithm: pick a random number, increment a counter by 1, and if the number is a match, save the
counter to a list and reset that counter to 0. They used these data to plot a histogram of the list of samples-until-
success counters. Surprisingly, when this code was run, it showed up as the precise graph that Dor had drawn on the
whiteboard during the research meeting: A 1/x -type graph. Ben and Matthew checked the algorithm and the code
several times and then formulated preliminary theories to explain the graph. That is, once they were satisfied that
they had debugged the code, they reluctantly turned to debug their own thinking—the computer model they had
themselves created now constituted an epistemic authority that forced them to reconsider their prior assumptions.
They had no clear idea why the graph worked as it did, but now they had some theories. They had ownership of it as
a problem instead of as a mistake.

Josh’s world
Josh was baffled by Dor’s rationale for plotting successes-per-sample. The bell shape of the graph (see

Figure 1b) felt correct, but Josh thought it was perhaps unnecessary to resort to sampling in order to get this shape.
Specifically, Dor’s bell-shaped fixed-sample distribution suggested to Josh that he could represent the attempts-per-
success frequencies, too, in terms of a bell-shaped distribution. “Sure,” he thought, “it’s possible to get to the
solution of the key color-combination quicker than the mean number of attempts-per-sample, but for every time one
finds the solution slightly quicker, there’ll be a different time when it takes longer—it sort of balances out—just like
the normal curve.”

Josh proceeded to analyze the probability of a run (attempts until success) that lands in each column of the
frequency-distribution graph. That is, Josh attempted to reconstruct the building blocks of the histogram by stepping
along column-by-column from the y-axis towards the right and accounting mathematically for each step. On each
trial (attempt), there would be a 1-in-8 chance of success. That part Josh knew to be true. So, 1 out of every 8 runs
should end up in the column representing 1 trial until success, and the rest of the runs—7 out of 8 runs—will end up
somewhere to the right of that column. Then, given that a run failed on the first trial, it once again has a 1-in-8
chance of success in the second trial, so 

8

1
*

8

7 of the runs will end up with 2 trials until success. This is certainly less
than in the first column. Similarly, failure on the second trial would push the run into the next column to the right.
This process continues so that, for example, 3 trials until success will happen 
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implies that the 3rd column should have less than the 2nd column. Josh was convinced this process would continue
and that therefore, by induction, the ski-slope was correct after all.

Denouement
When Ben and Matthew came into a subsequent meeting, they were excited. They had coded up a NetLogo

model to implement the thought process that they, as well as Josh, had had during the earlier meeting and had found
Dor’s assertion, that plotting trials until success results in a ski-slope graph, to be true. Josh quickly sketched for
them his thought process on the problem and they confirmed that they were then thinking about “something like
that.” Matthew, Ben, and Josh all, still, expressed dissatisfaction with Dor’s Stick analogy.

According to the Stick model, the probability of a single string of length 1, 2, 3, or more occurring was
considered equal. In other words, translating this framework back to the original problem, after each success it is
equally likely that a subsequent string (attempts until success) will run 5 attempts until a success as it will run 2
attempts until a success. However, armed with their new understanding of the outcome distribution, where 5
attempts until success has a smaller chance of occurring compared to 2 attempts-until-success, Dor’s sticks did not
make sense to Matthew, Ben, and Josh. Dor translated this critique in terms of the Stick model and realized that he
had confused the phenomenon with its probabilistic representation: one cannot take a frequency distribution and
make it into its own sample space. Sometimes a stick is just a stick.

Discussion
Mathematics can be a difficult domain for learners. More so, when the subject matter does not fit well with

intuitive knowledge, as is often the case with probability (Kahneman & Tversky, 1982; Konold, 1989; Wilensky,
1993, 1995, 1997). Conversely, intuitive knowledge may afford a powerful personal resource for concretizing
abstract ideas (Wilensky, 1991) and thus assimilating and appropriating these ideas (Papert, 1980). This tension
between, on the one hand, the unintuitiveness of some mathematical ideas and, on the other hand, the value of
intuiting mathematics is a polemical, pedagogical, and design challenge that invariably entails tradeoffs. We believe
in a mathematics education that goes deeper than merely building isomorphism between equations and other formal
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representations—the mapping must also be anchored in intuition, that is, assimilated to each individual’s collection
of models. Connecting to ideas that are counter-intuitive is challenging because one must build mental models that
are loyal to both the mathematical constructs and one’s intuition. That is, one must forge a middle ground that
reconciles immutable equations and one’s fickle sense of proof. As individuals, we had each succumbed to over-
lenience in evaluating the validity of our own proofs. We could be so indulgent because, for each of us, the “proof”
was not rigorously mathematical, but lay in our personal sense of conviction in the viability of our own models for
explaining how the sloped graph came to be. Until the group critiqued our individual convictions, we were
complacently entertaining different models for the same graph, because the function of these models was personal
and not externalized. Moreover, our personal criteria for accepting or rejecting the ski-slope graph were anywhere
between vague and unarticulated. Also, to varying degrees we were satisfied to accept the results of a computer
simulation. So only through exposing, sharing, and debating these implicit models could we begin—as individuals
and as a group—to critique our underlying assumptions and models. It is perhaps coincidental that as a group we
employ a diverse range of explanatory mechanisms for grounding our mathematical understanding—real-world
phenomena, programming, and mathematical models—yet this epistemic wealth would have remained untapped and
unshared if it were not for our learning environment that fostered computer-facilitated argumentation.

Table 1. Tradeoffs in the Authors’ Mathematical Reasoning
Author Strategy Benefits Learning Issues

All Formal visual
metaphors (e.g.,
histograms)

Shared representation
of process product

Product over process: shared
understanding of phenomenon may mask
misunderstanding of underlying process

Dor Informal visual
metaphors

Grounds mathematical
object

Not necessarily isomorphic to problem;
Potentially imprecise

Ben and Matthew Computer model
authoring

Precision;
Accessible construction

Some programming skills necessary

Josh Mathematical proof Precision Expert construction necessary

Dor’s model was essentially mathematically correct, yet proved non-isomorphic to the problem at hand,
because it modeled a mathematically different phenomenon. Ben and Matthew’s models were correct and pertinent
to the problem but unintuitive to Dor and Josh. Josh needed mathematical proof to understand a mathematical
object. And yet, for each of us, the use of idiosyncratic models as mathematical objects scaffolded learning by
providing an epistemic form (Collins & Ferguson, 1993) that served in a dialogue both between human and math and
between human and human.

All of us held radically different conceptions of what sufficient proof would consist of in this situation (see
Table 1, above). Dor, coming from a cognitive-psychology background and working primarily in mathematics-
education design, was looking for intuitive ways to transform the temporal constituents of the problem (successive
stochastic occurrences) into spatial and tangible constituents (the sticks), towards creating a tractable proof-
explanation couched in terms of visible objects in the world. Ben and Matthew were looking for assurance that the
simulation reflected their set of algorithmic specifications. For Ben and Matthew, it was sufficient for a model
produced according to their own specifications to behave identically to a model produced to other specifications to
believe that the semantics of the models were identical. Josh, being a mathematician, was looking for a formal
mathematical proof. If we were each living and working within a social void, perhaps our individual interpretive
models would have sufficed, as inaccurate and/or incomplete as they were. We are all relatively well-versed in all of
the proof techniques used by our peers, yet we each chose to internalize the problem differently. Internalized proof,
though, once arraigned and ferreted out to the public domain, must stand the test of peers’ rigorous critique. Thus,
the pragmatic demand of collaboration in our research team teased the tacit models out of each of us and pitted them
against each other until we had reached—as a group—a confluence of our different approaches. This confluence,
once internalized, afforded us both greater confidence in the specific content we had discussed and conceptual tools
that may inform our future modeling of simulated phenomena—each according to his steadfast style.

This story could be viewed as a distributed-cognition project. None of us held a complete understanding of
the problem independently of each other, our proofs, our models, and the technology that enabled our discourse. The
computer-based modeling played a central role in creating this distributed cognition, as it made manifest our
respective intuitions without explicitly making the interpretations themselves manifest. By using a concrete,
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computer-created mathematical model, we could each look at a stable object, interpret it, and inspect our
interpretation with the group. In other words, the models served us as a platform both to tap our previous
experiences and ideas and also to look at our own interpretation of the model with others. Curiously, the positioning
of mathematical knowledge as a perceivable taken-as-shared object was both what sparked the initial conflict and
the platform for bartering and negotiating over our phenomenology.

Conclusion
Seeing is believing, but believing is an inadequate epistemology of mathematics. There lies a conceptual

abyss between being able to run a computer simulation and being able to critique it. This conceptual abyss remains
covert when we take mathematical constructs for granted, such as in blindly accepting a computer-generated graph
as true. At the same time, making this conceptual abyss explicit—to oneself, to one’s peers—affords powerful
learning experiences. We have discussed a case in which several students were fortunate to discover the over-
simplifications of their individual understandings of a simulated stochastics experiment. Initially, each student
harbored a different conception of the model. These individual conceptions were unarticulated and each constituted
a limited and incomplete story of the computer simulation. A breakdown occurred through dialogue that challenged
the exclusiveness of each conception and forced the individuals to ground their implicit understanding in
mathematical–technological artifacts they each authored—artifacts that exposed each personal construction to
interpersonal scrutiny, which was motivated by concern over personal stakes. The diversity in explanatory
mechanisms and cognitive styles that the group enlisted in analyzing the validity of a shared image created not a
fragmented but a robust collective understanding of the mathematical phenomenon underlying the image.
Ultimately, each individual sustained their personal intellectual style, yet we believe that it is such negotiation
between competing-cum-complementary styles—a negotiation instantiated in vivid constructions—that engenders
individual concretizing of abstract ideas (Noss, Healy, & Hoyles, 1997; Papert, 1980; Wilensky, 1991). Whereas we
espouse learning environments that respect and foster epistemological pluralism (Turkle & Papert, 1991), we
conjecture that such pluralism that lacks interpersonal critiquing of individual ‘makes-sense’ feelings may miss on a
potentially powerful learning mechanism and even hide personal modeling processes that are mathematically
incorrect. That is, we believe in the educational power of distinguishing between quantitative intuitions and
mathematical content and form. The larger issue at stake is fostering informed citizens that can effectively critique
information that is presented as true.

We hope to have demonstrated both affordances and constraints of computer simulation of mathematical
phenomena, and specifically the dangers of learning in a computer environment in which models remain at a taken-
for-granted iconic level. Moreover, we advocate leveraging conceptual diversity through computer-facilitated
argumentation that: (a) motivates individuals to effortful mathematical inquiry; (b) pools together many and varied
intellectual resources; (c) provides opportunities for individuals to build fluency in the domain through
argumentation, use expert vocabulary, and attempt to negotiate the different explanations; (d) fosters individual
construction of a mature epistemology of science and mathematics that distinguishes between phenomena, models,
and forms and content of representation; and (e) engenders useful and respectful group discourse between
individuals who appreciate the potential strength in diversity.

We conclude that whereas computer simulations can potentially facilitate instructional argumentation, the
ICLS community should be wary of false agreement between interlocutors that may arise through such ostensible
sharing of a representation that does not expose epistemological–mathematical disagreement inherent in the
interlocutors’ underlying assumptions. A computer simulation is a powerful platform facilitating discourse, but it is
only through exposing conflicting assumptions, for instance as instantiated in different authored code, that learners
can fully avail themselves of the opportunities and promises of collaborative computer simulations. The ubiquity of
computer-generated mathematical and scientific representations is a double-edged sword, and it is up to the
Learning Sciences community to help learners hone and brandish this sword effectively.

Endnotes
(1) The term programming may connote a certain subclass of so-called "old-style" programming languages and

authoring environments not designed for learning or ease of use. Recently, there have been positive
developments in authoring environments designed specifically for novices (DiSessa, 2000; Hancock, 2003; Noss
& Hoyles, 1996; Repenning, Ioannidou, & Zola, 2000; Wilensky, 1999).

(2) In the narrative form, we employ the terms “we” and “us” sometimes to mean the four graduate student
“conversers” and sometimes to mean the five paper authors. The context disambiguates the referents.



Abrahamson, D., Berland, M.W., Shapiro, R. B., Unterman, J. W., & Wilensky, U. (2004). Leveraging epistemological diversity through
computer-based argumentation in the domain of probability. In Y. B. Kafai, W. A. Sandoval, N. Enyedy, A. S. Nixon, F. Herrera (Eds.),
Proceedings of The Sixth International Conference of the Learning Sciences (pp. 28 – 35). Mahwah NJ: Lawrence Erlbaum Associates.

(3) The number of successes has been inflated here relative to the above problem due to the constraints of this
textual presentation of a computer simulation.

(4) It appears that the construct of ‘sample’ can be misleading, perhaps due to prior associations, e.g., must its size
be fixed? Also, the singular form of the word ‘sample’ may implicitly support a sense of a sample as a single
attempt.

(5) As it turned out, the term “1/x – type curve” was not mathematically accurate. However, this is the signifier we
used to gain a common foothold in arguing our interpretations of the graph on the computer screen.

(6) The general formula that counts the number of distinct partitions of n: p(n) ~ exp [ π * sqrt (2n / 3)] / 4 n * sqrt 3
(7) The extra tall vertical line partitions the total area under the curve into two equal parts. Its height is irrelevant.
(8) Assuming your random guesses are uniformly distributed.
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