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I.  Introduction 
In this paper, we describe a computer-based approach to learning about evolution. In the 
Simulated Evolution project we investigate students’ understanding of evolutionary 
concepts and design multi-agent computer models for student exploration and analysis of 
evolutionary scenarios. The Simulated Evolution project is embedded within a set of 
projects we have undertaken to investigate students understanding of complex systems 
and to design effective agent-based modeling activities that help students make sense of 
such systems (e.g., Wilensky, 1999c; Wilensky, Hazzard & Froemke, 1999; Wilensky & 
Reisman, 1998). In the context of these umbrella projects, we have created units and sets 
of activities about evolution, among these units on population biology (Wilensky, 
Hazzard & Longenecker, 2000), classic evolutionary examples (e.g., Wilensky, 1998c) 
and the evolution of cooperation. (see the EACH project (Centola, Wilensky & 
McKenzie, 2000)). The agent-based modeling language, NetLogo (Wilensky, 1999a), 
serves as the computing substrate for building and running the evolutionary models. 
Recently, we have integrated the various units into a more comprehensive curriculum , in 
ongoing development, called BEAGLE (Biological Experiments in Adaptation, Genetics, 
Learning and Evolution, (Wilensky, Novak & Rand, 2004)).  In this paper we report on a 
small study we conducted in 1998/1999 with students working with the EACH unit to 
learn about the evolution of cooperation. A more comprehensive description of the 
Simulated Evolution project and the BEAGLE curriculum can be found in (Wilensky & 
Novak, in press). 
 
The prevailing approaches to teaching evolution in secondary and early post-secondary 
education are intended to lay the groundwork for students to understand the basic 
concepts of fitness, natural selection, and evolutionary success. In practice, however, 
what students retain from this instruction is largely the phrase  “survival of the fittest” 
(Brumby 1984; Centola, Wilensky & McKenzie, 2000; Ferrari & Chi, 1998). Many 
students who have taken introductory high school and college courses in evolution come 

                                                
1 This paper was adapted from Centola, D., Wilensky, U., & McKenzie, E. (2000). Survival of the 
Groupiest: Facilitating students' understanding of the multiple levels of fitness through multi-
agent modeling - The EACH Project. Proceedings of the Fourth International Conference on 
Complex Systems, Nashua, NH: New England Complex Systems Institute and InterJournal 
Complex Systems, 377. Adaptations were made to reflect current software and curricula. 
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away from their studies understanding natural selection in terms of strong individuals 
dominating over weak individuals.  Even students who participate in curricula that do not 
explicitly teach this view of natural selection will often come out of instruction with these 
simplified understandings (Brumby, 1984; Greene, 1990). Research suggests that 
students’ misconceptions about how the evolutionary process works can often be traced 
beyond the students’ coursework to fundamental intuitions about how natural systems 
behave (Bishop & Anderson, 1990; Ferrari & Chi, 1998).  
 
In over a decade of previous research we have described the difficulties students (and 
adults) have in making sense of complex systems. In particular, we have documented the 
difficulties students have with understanding the role of randomness and decentralized 
control in complex systems and how understanding such systems requires thinking at 
multiple levels (Resnick & Wilensky, 1993; Wilensky & Resnick, 1999). A large body of 
research has reported the difficulties students have in making intuitive sense of random 
variation, probabilistic runs, decentralized control – all sub-component processes of 
natural selection (Tversky & Kahneman, 1974; Konold, 1991; Resnick, 1996; Wilensky, 
1997b; Wilensky & Resnick, 1999). Because most students have not had many 
opportunities to interact reflectively with complex systems, they have not developed the 
intuitive knowledge that would help them make sense of such systems. We have designed 
agent-based modeling environments and activities that enable students to explore 
complex systems across a wide variety of domains and documented their increased 
understanding (Abrahamson & Wilensky, 2004; Blikstein & Wilensky, 2004; Wilensky, 
1999b; Wilensky & Reisman, 1998). We view evolutionary processes – processes that 
operate at multiple levels – as fundamental processes of change of complex systems. 
Without challenging and further developing their intuitions about how natural systems 
work, students are unable to internalize an understanding of many of the important 
concepts in evolutionary theory (Greene, 1990). Evolution is therefore a natural domain 
for the design of agent-based models to further understanding. 
 
One important aspect of evolutionary theory that is difficult for introductory students to 
understand is the multi-level perspective (Sober & Wilson, 1998; Mitteldorf & Wilson, 
2000; Wilensky & Resnick, 1999).  While a complex systems approach to evolution 
encourages students to think about concepts such as fitness and natural selection from a 
number of perspectives, students given traditional instruction typically try to pin down 
these concepts into singular meanings. In particular, students’ understanding of fitness is 
often oversimplified by understanding it as an individual’s strength in one-on-one 
competition for resources (Bishop & Anderson, 1990).  Because of this narrow 
conception of fitness, many interesting aspects of evolutionary biology such as the 
plausibility of altruistic and cooperative behavior being evolutionarily advantageous 
(Axelrod, 1984; Wilson & Sober, 1998; Mitteldorf & Wilson, 2000) are conceptually 
intractable to students of evolutionary theory (Jacobson, 1996).  The Simulated Evolution 
project was established to enable students to develop more sophisticated intuitions about 
evolutionary processes by interacting with multi-agent models of evolutionary systems.  
The primary goal of the EACH unit is to help students to think about the complex 
dynamics of evolution that would allow for altruistic and cooperative habits to be 
evolutionarily successful.  One important goal of this research is to help students to think 
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more critically about their assumptions about fitness, and how these assumptions play 
into their expectations for evolutionary scenarios. Specifically, we want students to see 
the significant differences between understanding fitness at the individual-level, at the 
gene-level, and at the group level, and how understanding fitness at multiple levels can 
dramatically change their conceptions of other evolutionary processes, such as the 
evolution of altruism. Before the advent of powerful computation, calculating trait fitness 
for individual contexts was intractable, so trait fitness was conceived as averaged over all 
environments. By taking an agent-based modeling perspective on evolution, students are 
enabled to think about trait fitness from the point of view of a specific individual in a 
specific environment. 
 
 
II. Project Frame   
The Simulated Evolution project is one of several curricular interventions undertaken as 
part of several NSF funded research projects. These projects share the goal of building 
computer-based tools and curricula to enable students to explore and make sense of 
complex systems and to study student sense-making using these tools. As part of these 
projects, we have developed several agent-based modeling languages and environments 
culminating in the multi-agent modeling environment NetLogo (Wilensky, 1999a).  
NetLogo is a multi-platform agent-based modeling language and integrated modeling 
environment.  All activities described herein are written in NetLogo or in a previous less 
developed language, StarLogoT (Wilensky, 1997a). NetLogo was designed explicitly for 
exploring systems with multiple interacting ”agents”. NetLogo is a prominent 
representative of a new class of such multi-agent (AKA agent-based) modeling 
languages. While most of these languages were designed for researchers, NetLogo was 
explicitly designed as a tool for both learners and researchers and adheres to the design 
criterion of “low threshold and high ceiling” (Tisue & Wilensky, 2004). Using NetLogo, 
students can represent many different types of "agents," such as flashing fireflies, cars in 
traffic or molecules in a gas.  They can then build models of the behavior and interactions 
of thousands of such individual agents (Wilensky, 2001).  Two of the models described 
herein were originally developed in StarLogoT (Wilensky, 1997) and have subsequently 
been ported to NetLogo.  More recent project models have been developed in NetLogo. 
Besides its more advanced modeling features, NetLogo also incorporates the HubNet tool 
(Wilensky & Stroup, 1999), which opens avenues for incorporating interactive agents and 
multi-user scenarios; these possibilities will be discussed briefly in the concluding 
section.  
 
The latest version of NetLogo and an associated large collection of sample models 
(collectively entitled the NetLogo Models Library (Wilensky, 1999)) are available for 
download at .ccl.northwestern.edu/netlogo. The models are drawn from a wide range of 
disciplines including physics, biology, mathematics, computer science, chemistry, 
materials science, ecology, economics, urban studies and linguistics. 
 
III. The Context 
As we have mentioned, Simulated Evolution emerged from a succession of projects in 
which we studied students at many different grade levels as they explored and created 
multi-agent models of complex phenomena. This work was conducted at the Center for 
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Connected Learning and Computer-Based Modeling (CCL), first located at Tufts 
University and then moved to Northwestern University. Students (from middle school to 
graduate school) came to the CCL and met informally with project staff who mentored 
them in learning NetLogo. Students explored models from the project library according 
to their interests. They were encouraged to vary and extend the underlying NetLogo code 
for the project sample models and, when they felt ready, to create new models from 
“scratch”. The topic of evolution, in general, is one that has appealed to many of the 
student modelers. For the high school students and many of the undergraduates as well, 
evolution was studied largely in “story” form. That is, they learned stories of how the 
theory of evolution came into being, how it was resisted and how it is supposed to work. 
Many of the students found these stories intriguing but unsatisfying. The dissatisfaction 
consisted of feeling that they did not have an adequate methodology for testing the 
plausibility of particular evolutionary arguments or for evaluating competing 
evolutionary claims, 
 
The Simulated Evolution project is an on-going endeavor to teach students about 
complexity in evolution.  The EACH unit began with a focus on getting students to 
explore models wherein altruism, cooperation, and group behaviors could survive under 
Darwinian selection. The motivation behind this unit was to expand students’ notion of 
fitness and to get them to take into account the complex field of factors that play into the 
evolutionary process. The unit concentrates on students’ conceptions of fitness, and is 
directed at helping them to develop intuitions about evolution as a multi-level process.  
Additional EACH unit models, not included in this paper, addresses student conceptions 
of randomness in natural selection, and focuses on fostering students’ intuitions about 
genetic variation in populations and the mechanism of genetic drift..   
 
The Students  
The students participating in the present study were undergraduates at Tufts University. 
These four volunteers were drawn from the sciences and social sciences departments.  
Beverly was a junior biology major; she came to the Simulated Evolution project 
interested in getting a ‘complex systems’ understanding of evolution.  David was a junior 
biology major who came to the Simulated Evolution project because he wanted to 
understand how altruism could be an evolutionary advantage. Amy was a sophomore 
sociology major who wanted a better understanding of how the social and group 
dynamics of populations could evolve.  Derek was a freshman chemistry major who came 
to the Simulated Evolution project because of his desire to combine his interests in 
evolutionary biology with his interests in mathematics.  They had all studied evolutionary 
theory in either a high school or university class. They were recruited to the study by an 
advertisement offering the opportunity to interact with computer models and simulations 
that could result in improved understanding of evolution. 
 
We began the study by meeting with each student individually and asking them to discuss 
their ideas on evolutionary theory. All of the students expressed common intuitions about 
individual selection, and at some point in the discussion mentioned “survival of the 
fittest.” But when asked to flesh out the idea of fitness, the students had difficulty 
articulating what ‘fitness’ meant to them beyond the popular notion that fitness was 
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strength: the power of an individual to dominate other individuals. These pre-session 
interviews gave useful guidance to the research team on how to scaffold student  
interaction with the models. They also served to set the ground for the project 
intervention as students started to question their assumptions about the meaning of 
"fitness" – questions that were elaborated and discussed once they began to interact with 
the models.   
 
Overview of the Activities 
As part of the Simulated Evolution project, we have developed a series of models that 
enable students to interact with certain evolutionary scenarios in order to discover what 
outcomes are plausible, how their assumptions about fitness play into the their 
expectations, and how different environmental and social considerations can affect the 
fitness of different populations. These models serve as seeds for developing intuitions 
about evolutionary processes. Students run these models exploring their behavior under a 
variety of conditions. They then modify and extend the models to further refine their 
thinking. Ultimately, our hope is that most students participating in the Simulated 
Evolution project will be inspired to develop and discuss their own models of 
evolutionary scenarios, thereby developing a self-sustaining means for testing their 
intuitions about evolution, and gaining an increasingly rich understanding of the 
complexity of the evolutionary process. 
 
The Simulated Evolution project activities are structured around basic sets of “seed” 
models.  For the EACH unit, the goal of these models is to raise basic questions about 
fitness, altruism, and group dynamics in natural selection that will encourage students to 
explore these issues further. The activities we describe herein are based on a combination 
of our “seed” models and a set of models that were developed by students while engaged 
in the EACH unit. The original “seed” models, the Altruism models (Wilensky, 1997c), 
were developed during the early stages of the project when the focus of our research was 
directed more specifically toward helping students to understand how the evolution of 
altruism is possible. During an early session, we collaborated with a student-learner, who 
was inspired by the Altruism models to find a more behavioral account of how altruism 
could evolve, to develop a model called the Cooperation model (Wilensky, 1998b). The 
Cooperation model gave a more embodied feel to the issues surrounding cost, benefit, 
and altruistic behavior. The Cooperation model shows how an altruistic behavior that 
would be selected against under normal conditions, could survive under conditions of 
high population viscosity. Because the Cooperation model is closer to student experience 
than the original Altruism model, we decided to adapt a version of it to use in our 
research on students’ understanding of fitness and how it relates to their understanding of 
complexity in evolution.   
 
IV. Activities 
In the research described in this paper, we used two sets of models, the Altruism set and 
the Cooperation set, as complementary ways of exploring the issues of fitness and 
complexity in evolution. The activities are organized in two parts. We first presented the 
Altruism models in order, letting students become familiar with the first model, and its 
unsurprising consequences, and then gave them the second, more problematic model. 
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After some discussion, we gave them the first Cooperation model, and let them explore 
the parameter space.  Once they became comfortable with this model, we asked them to 
apply the lessons from the Altruism model to the case of the Cooperation model.  Over 
the course of their involvement with the EACH unit, students made surprising advances 
in their understanding of group behavior and in their conceptions of the differences 
between individual, group, and gene-level fitness.  They came away from the activities 
with a more critical sense of how distinctions between individual and gene-level fitness 
determine how they understand group-level phenomena such as the evolution of altruism. 
Most importantly, they began to see that group behaviors are phenomena that need to be 
considered from multiple levels of interpretation in order to understand how they can 
function in evolution. 
 
The First Altruism Model2 
The first model used in the EACH unit was a conservative model of evolutionary 
behavior based on evolutionary biology theory (Hamilton, 1964; Wilson, Pollock & 
Dugatkin, 1992). This first model has two types of agents: selfish and altruistic. The 
premise of the model is that each agent “looks around” to its neighbors and sees whether 
they are altruistic or selfish3.  For each altruistic neighbor, the agent increases its fitness 
by a fixed value.  Thus, each agent with altruistic neighbors would have a higher fitness 
in the reproductive lottery.  Each agent then calculates its fitness with one of the 
following simple equations: 
 
       If I am a selfish agent, my fitness is 1 + my benefit from my altruistic neighbors (Bn). 
       If I am an altruistic agent, my fitness is 1 – the cost of being an altruist (C) + Bn  
 
The values of altruistic benefit (B) and cost (C) are determined by slider-variables. We 
initialized these variables to values such that the cost of being an altruist significantly 
weakens the fitness value of altruists, while the benefit from the neighboring altruists is 
only significant when there are two or more of them. 
 
Each agent calculates Bn as B * proportion of ones neighbors (including oneself) that are 
altruists.  
 
To illustrate the fitness updating, we present a quick example: 
Let B = .5 and C = .2 . 
Suppose you are an altruistic agent with fitness 1 and that you are surrounded by two 
altruistic neighbors and two selfish neighbors. Then the proportion of your altruistic 

                                                
2 The two Altruism models were combined into one model in the StarLogoT models library. That 
model can be downloaded at http://ccl.northwestern.edu/cm/models/altruism/ . To get the 
behavior of the Altruism 1 model, set both the harshness and disease sliders to zero. The Altruism 
model was converted to NetLogo and can be downloaded at (Wilensky, 1998a, 
http://ccl.northwestern.edu/netlogo/models/altruism ). 
3 In agent-based modeling, it is common to take the point of view of the agent and talk about it as 
if it is active. But, in fact, this model does not assume that the agents are active, the benefit 
conferred on the central agent can be purely passive. 
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neighbors is 3/5 . You would therefore update your fitness as 1 - .2 + .6 * .5 and your new 
fitness would be 1.1  (See Figure 1). 
 
 
 

 
Figure 1. The altruistic agent (pink) at the center recalculates its fitness based on the proportion (3/5) of 

altruistic agents in its neighborhood. 
 

Each agent is at the center of a five-agent neighborhood. To enter the reproductive 
lottery, each agent looks at its neighbors (in the four cardinal directions) and assesses 
their fitnesses. All of the altruistic agents’ fitnesses are summed (including the central 
agent, if it is an altruistic agent), and all of the selfish agents’ fitnesses are summed 
(including the central agent, if it is a selfish agent).  These sums constitute the weight of 
altruistic ‘seeding,’ and the weight of selfish ‘seeding’, respectively, for the center spot in 
the reproductive lottery.  To complete a generational cycle, a random number is picked 
between 0 and the total of the weights for a spot.  The spot is then given to the type of 
agent whose weighted chance fell on the side of the random number. The higher an 
agent-type’s weight, the greater the chance that that type of agent will win the spot.    

 
We included control parameters in the model, so that students could set the relative 
density of the altruistic and selfish populations. The clear outcome of this initial model is 
that the fitness of the selfish agents is higher than the fitness of the altruistic agents. 
Independent of the initial population densities, after on average two-hundred generations, 
all of the altruistic agents are extinct; the upper bound on this time, starting with almost 
no selfish agents, is about five-hundred generations before the altruists are extinct. The 
outcome of this model fits well with standard adaptationist accounts of evolutionary 
theory (Hamilton, 1964; Williams, 1992).   

 
Figure 2a below is the control interface for the StarLogoT Altruism-Model 1.  Figure 2b 
shows the model when it starts running.  The pink agents are altruistic and the green are 
selfish.  Figure 2c shows the model after it has run for about 100 generations (about thirty 
seconds running on a typical project computer at the time, but about one second on a 
typical current personal computer). 
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                      Fig. 2a                                          Fig. 2b                                              Fig. 2c 

Figure 2. The Altruism Model 1  
 
The results of running this model were consistent with the students’ expectations for 
evolutionary theory.  All of the students predicted that the selfish agents would win. 
Clearly, the students noted, the selfish agents were the stronger agents, and clearly they 
had a higher individual fitness.  After running this model a few times, students felt 
comfortable with the parameters, and were confident that they understood how the 
evolutionary scenario was playing out. By enabling the students to develop a feel for the 
modeling environment by running a model with a familiar outcome, we hoped to 
encourage them to develop explanations about how and why the scenario was playing out 
as it was. 
 
When we asked her why the selfish agents had won, one student, Derek, a freshman 
chemistry major, said, “The selfish agents are stronger because they have a higher fitness 
value.” But, when we asked Derek to expand on the idea of having a higher fitness value, 
he said “Having  a higher fitness is being strong enough to get more food, which makes it 
more likely to reproduce.” This was a typical response; the students viewed fitness as an 
individual’s strength in competition for resources.  Another student, David, a junior in 
biology, said, “fitness is the strength of a genotype to out-compete other individuals.”  
David’s notion of fitness demonstrated a conflict between his understanding that there are 
gene-level phenomena, and his intuition that fitness must be a property of individuals. 
 
The Second Altruism Model 
After getting the students’ reactions to the first model, we introduced them to the second 
model. The second model, based on recent work in the evolutionary biology of 
cooperation and altruistic behavior (Mitteldorf & Wilson, 2000), introduces a new 
element to the model:  adversity. The second model adds a slider-variable called 
‘Harshness,’ and a slider variable called ‘Disease.’  The harshness variable gives each 
empty “patch” (a unit of the screen that is not occupied by a selfish agent or an altruistic 
agent) a chance of staying empty (resisting population) each turn.  Envisioning the 
model-world as an environment in which individuals need to occupy a space on the grid 
in order to live, the harshness variable limits population growth by, at each clock “tick”, 
making some of the spaces uninhabitable The disease variable is incorporated into the 
reproductive lottery for each spot.  The value of this variable corresponds to the chance 
that an agent that occupies a spot on the grid will fail to reproduce, and thus that the spot 
will become empty. The introduction of these elements into the model alters the 
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relationship between individuals and their environment.  The new threats to the well-
being of individuals reframe the importance of group behavior on individual success. 
This second model has a much richer parameter space -- students can explore the effects 
of the various harshness and disease values on the stability of the altruistic and selfish 
populations. 
 
Figure 3a below is the control interface for the Altruism-Model 2.  Figure 3b shows the 
model after thirty generations.  Figure 3c shows the model after two-hundred-fifty 
generations. 
 

       
            Fig. 3a                Fig. 3b                                    Fig. 3c 

Figure 3. The Altruism Model 2  
 
Students found that when the harshness value is set around .96, and the disease value is 
set around .2, the model shows the surprising result that the altruistic population fares far 
better than the selfish population.  Why should this be?  This counter-intuitive result 
comes from the fact that when the natural conditions are harsh enough, single agents 
cannot survive against nature. That is to say, even though the selfish agents would fare 
better in competition against the altruistic agents, the altruistic agents would fare better 
against nature than the selfish agents. The reason for this is that altruistic agents survive 
in groups of altruists.  Each altruist adds to the fitness of the other altruists. While a lone 
altruistic agent can survive no better than a lone selfish agent, because the altruists 
contribute to the well-being of the agents around them, the community can survive, with 
its combined altruistic benefit, in the face of harsh conditions4. 
 
The students who participated in the project were all very surprised by this result. After 
running the model a few times, students began to ask questions about how the altruists 
were winning. It was clear from the outset that the selfish agents were the stronger, or 
more fit, agents, and yet under harsh conditions the altruists were running the selfish 
agents to extinction. We asked students to describe what was happening on the screen, 
and how it was different from the first model. They all recognized that, unlike the first 
model, the altruists were grouping together.   
                                                
4 While the Altruism 2 model presented here relies on harsh conditions to enable altruism to 
survive, Mitteldorf and Wilson’s result does not require harsh conditions – large reasons of 
parameter space can enable altruism to survive as long as the density of the total population is not 
equal to 1 – so if there are vacant areas or multi-populated areas then altruism can survive. 
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After discussing this for a few minutes, one student, Beverly, a junior biology major said, 
“Well, it means that all of the altruistic benefit is going only to altruists; which means 
that under harsh conditions, either you are an altruist, or you’re on your own.”  She 
suggested that altruists were in fact more fit in the second model, but only as a group.  
We discussed her earlier comments about individual fitness, and asked her how she could 
make sense of the fact that this group advantage was at odds with her previous focus on 
individual strength. After some group discussion about how it was possible to have 
multiple levels of fitness, Beverly resolved this apparent conflict, “So the altruistic gene 
is more fit under harsh conditions, even though the individuals have a low fitness, 
because the harshness allows the altruists to clump together, and benefit only one 
another.”   
 
Most of the students made similar inferences about the relevance of grouping to gene-
level fitness. Many of them remarked that the selfish agents were still more ‘fit’, even 
though the altruists could survive better.  But, they were puzzled about this apparent 
equivocation in the term ‘fitness.’ We encouraged them to address this confusion by 
concluding this part of the sessions with a discussion of the idea of the “survival of the 
fittest”, and what that meant.  Amy, a sophomore sociology major, had earlier been 
confident that this catch-phrase summed up natural selection as a process that favored the 
strongest individuals, but was now unsure of how to think of ‘fitness’:  “The altruistic 
group has a higher fitness, as a group, than the selfish group, but I don’t think that they 
are any stronger as individuals. They [the altruists] are stronger now [under harsh 
conditions] because being in a group makes gene-level selection matter.” Amy was 
beginning to see that thinking about fitness at the gene-level could change her perspective 
on group-level selection. Ultimately, she suggested that the phrase “survival of the fittest” 
was misleading.  Instead of “survival of the fittest”, Amy and the other students preferred 
to talk about how a population could survive, or ‘be more fit’ under certain 
circumstances, due to the benefits that a trait gave to the individuals that carried it.  
Indeed, most students were talking about traits as having fitness, and individuals as 
‘carrying’ this fitness. Another project participant, Derek, suggested that in this case, 
“survival of the groupiest” was a better phrase to describe the selection process. 
 
The Cooperation (Behavior) Models5 
After the students had explored the Altruism models, and had reflected on how the 
complexity of environmental and social factors affect an agent’s fitness, we gave them 
the first Cooperation model.  The Cooperation model consists of two parts:  cows and 
grass.  The grass was designed to grow in such a way that above a certain height, it would 
have a high percentage chance of growing back to its full height each turn, but below a 
certain height, it would grow back very slowly. The high grass is thus considered to be 
                                                
5 In the NetLogo models library, the two Cooperation models were combined into one NetLogo 
Cooperation Model. The VISCOSITY slider was replaced by a STRIDE-LENGTH slider – 
increased viscosity corresponds to decreasing the STRIDE-LENGTH. To get the behavior of 
Cooperation Model 1, set the STRIDE-LENGTH slider to its maximum value. The NetLogo 
Cooperation model can be downloaded from 
http://ccl.northwestern.edu/netlogo/models/Cooperation . 
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healthy, or sustainable grass, and the low grass is considered to be unhealthy grass. In 
terms of the model, these variables can be expressed in terms of the following parameter 
settings:  the maximum grass height is 10; the threshold for healthy grass is 5; the chance 
for growing back for healthy grass is 75%; and, the chance for unhealthy grass growing 
back is 30%. These parameters are the initial values for slider variables in the 
Cooperation model that can be modified by students. 
 
There are two types of cows. The first type of cow, the “greedy”, eats the grass as far 
down as possible.  The second type of cow, the “cooperative”, only eats the grass if it is 
above the fast-growth threshold. All the cows have the same metabolism, and require  a 
fixed amount of food to live. Each turn they lose a percentage of their energy, and if their 
energy runs out, they die.  Eating grass restores a cow’s energy by a fixed amount.  
Finally, if a cow’s energy reaches a certain threshold, it reproduces.  In terms of the 
model, these variables can be expressed in terms of the following parameter settings: all 
the cows get 51 energy units for eating from a patch of grass; they all lose 10 energy units 
each turn for moving (regardless of how far they move); they all reproduce when their 
energy level reaches 101; and, they all lose 40 energy units for reproducing. These 
parameters, too, are initial values for the sliders in the Cooperation model. 
 
Thus, all things being equal, the only difference between the greedy cows and the 
cooperative cows is that the former eat all the grass and over-harvest the land, while the 
latter will go hungry rather than damage the well-being of the food supply.  Supposing 
that these habits are not intentional states, but manifestations of different genetic traits, 
we asked students to discuss the scenario, and predict the outcomes of the models.   
 
All of the students said that the evolutionary advantage goes to the cows who can get as 
much energy as quickly as possible.  David said, “The greedy cows will have the clear 
advantage because they will be able to eat more food.”  He suggested that the higher an 
agent’s energy got, the more it would reproduce, and the more it would reproduce the 
more resources it would use.  Another student, Beverly, said, “once the greedy cows 
begin to reproduce, they will spread out and eat the grass below the level where the 
cooperative cows can eat.”  The cooperative cows would be keeping the grass high, so 
that they and the other cooperative cows would have plenty of food; however, the greedy 
cows would eat the grass below the healthy threshold, and the cooperative cows would 
have no food.  Amy said, “the cooperative cows will not be able to eat once the greedy 
cows start to eat the grass; and they [the cooperative cows] will go to extinction.”  
 
Below is a picture of the NetLogo Cooperation model (Wilensky, 1998b).  Figure 4a 
depicts the initial state of the model. The sliders determine the values of the following 
variables:  metabolism, energy from grass, reproduction- cost, level of energy needed to 
reproduce, the maximum grass height, the healthy grass threshold, the percentage chance 
to grow back for healthy grass, the percentage chance to grow back for unhealthy grass, 
and the numbers of the cooperative and greedy populations.  Students explored changing 
these variables, but found the result to be the same in most every scenario where there 
was a substantial environmental difference between healthy and unhealthy grass.  Figure 
4b shows the Cooperation model after 30 generations.  The greedy cows out-grazed and 
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out-reproduced the cooperative cows; eventually, they ran the cooperative population to 
extinction.   
 

Fig. 4a 
 

 
Fig. 4b 

Figure 4. The Cooperation Model 1 
 
In discussing the outcome of this model with the students, we asked them to explore ways 
in which the cooperative population could possibly survive.  Reflecting on their work 
with the Altruism models, a number of the students suggested that if we could get the 
cooperative population to group together, then they might be able to survive.  We 
encouraged this line of thought, and asked students to consider how this change would 
affect the fitness of cooperative individuals.  A few students immediately responded:  
Derek said, “if we got the cooperators to group together, they would all have higher grass 
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to eat, and would all benefit from their cooperative behavior…The cooperative gene 
would benefit only the cooperative gene, and it would be more fit.”  
 
For the second Cooperation model, we introduced the variable of population viscosity 
into the model.  We explained population viscosity as the limitation in a cow’s range of 
movement due to environmental barriers, and then asked students, individually, to predict 
what would happen when different values were entered in the Viscosity slider.  Many of 
them suggested that if the Viscosity value was high enough, that the greedy population 
couldn’t reach the cooperative population, and that the cooperative population would 
therefore survive.  Figure 5, below, depicts the second Cooperation model with the 
Viscosity set at eleven (which effectively limited the cows to one-eleventh their normal 
travelling distance) after 300 generations. 
 

 
            Figure 5. The Cooperation Model 2  

 
After running the model, students found that, given the above values for the other 
variables, at a Viscosity value of around about eleven the greedy population was kept to 
about a twentieth of the cooperating population.  The students were surprised to find that 
at higher values of Viscosity, the greedy population was so localized that it over-grazed 
and killed itself off. The students found a number of interesting metaphors for explaining 
the success of the cooperative population under high population viscosity.  But, more 
interestingly, they all understood that the localization of the populations was key to the 
success of cooperative behavior because the benefit of cooperation fell on the cooperators 
alone.  Beverly said, “the greedy cows were stronger when they could spread out because 
it takes a larger portion of land to support them.  They are more fit when there is no 
population viscosity.  But, the cooperative cows are more fit when there is no competition 
with greedy cows, because all of their cooperative benefit goes to other cooperative 
cows.”  After a few more minutes of discussion, Derek said, “So, the cooperators succeed 
because of gene-level fitness; the cooperation gene is benefited by itself.” Amy 
concluded, “When the cooperative gene helps itself, there is no way to beat it.”  
 
After their work with the cooperative models, many of the students began, in discussion, 
to explore important issues in the evolution of altruism and cooperation. The level at 
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which they had envisioned agents being altruistic or cooperative had implicitly assumed 
individual fitness as the standard for cost and benefit.  Their new conceptions of multi-
level fitness raised many questions about whether the altruistic habits were really 
altruistic, or whether they were only genes helping themselves.  Of course, these are 
precisely the questions that occupy contemporary thought in the field, and we were 
encouraged to see students beginning to understand the different levels at which these 
problems can be addressed:  what is altruistic at the individual level, is selfishness at the 
gene level.   
 
V. Conclusion 
The goal of the EACH unit was to enable students to explore their understanding of 
fitness and its relation to their conceptions of natural selection and the evolution of 
altruism.  All the students who participated in this study initially believed that altruism 
could not survive because it was not a benefit to individual fitness.  After students 
interacted with the models, they began to think of fitness as a multi-level phenomenon, 
and to think of the possible ways in which group and environmental factors can make 
altruism an advantageous trait.  Through experimenting with the models, students came 
to a new understanding of fitness, and of the role that conceptions of fitness play in their 
understanding of evolutionarily plausible scenarios.  
 
We encouraged students participating in the project to explore the NetLogo environment, 
and to build models that would explore their ideas of how different evolutionary 
scenarios would work.  We have also started to involve students in participating in on-
line interactive simulations of evolutionary systems.  Such participatory simulations are a 
new and emerging technology in which individual students act out the role of individual 
agents in a simulation. As this technology advances, we expect that participatory 
simulations will be a powerful new tool for exploring the roles of individual and group-
level phenomena in evolutionary systems. We have begun to develop on-going 
evolutionary scenarios in which each user is an agent that develops a survival strategy 
that is either passed on, if successful, or dies out, if unsuccessful.  We anticipate that 
enabling users to participate in these simulations as first-person agents will add new 
dimensions of understanding to their conceptions of evolutionary processes and the 
multiple levels of fitness. 
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