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Summary

In an ABM, agents communicate.

These interactions form a social network.

We are interested in how the properties of these 
networks affect group problem solving abilities.
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Standard genetic algorithm (GA)

Bubs & Candy first, then Dumbo alone, then ...

Dumbo & Moony, then Bubs & Goober, then ...

Start with a tricky problem
e.g. scheduling elephant bath time

Represent possible solutions as bit strings

= 101001010111101101110

= 001111011011011011011

 = 

 = 
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“Bath Schedule” creatures

101001010111101101110 =

001111011011011011011 =

Population Fitness function:

How good is each bath schedule?

f (      ) = fair      = 0.7

f (      ) = poor    = 0.3
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Genetic operators
101001010111101101110 =

001111011011011011011 =
Cros

so
ve

r

101001010111011011011 =

101001010111101101110 =

Clon
ing

101001010111101101110 =

101001010111101101110 =

Muta
tio

n

101001010111100101110 =
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“The Next Generation”

Generation T Generation T+1
Cloning

Cloning + Mutation

Crossover

and repeat until satisfied...
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Complete Breeding Networks

In the standard genetic algorithm, every agent 
can breed with every other agent.
This can be represented by a complete graph.
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Restricted Breeding Networks
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Why should we care?

Theoretical knowledge in machine learning
They might perform better than standard GAs
Understanding evolutionary processes

Applications (parallel GAs)
Peer to peer computing
Mobile and ad-hoc networks
Swarm robots, smart dust?
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Primary Question

How sparse can the breeding networks be,
 such that the genetic algorithm still works?
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Diffusion of Innovation

Organizations have social structure

Individuals follow policies
ideas, problem-solving methods, etc

Better “more innovative” policies diffuse 
through the social network, as individuals 
adopt those policies.
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Diffusion of Innovation
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Diffusion of Innovation
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Diffusion of Innovation
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Diffusion of Innovation
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Complexifications

Policies could be multi-faceted

Agents could take pieces of policies from 
other agents

Adoption shouldn't be deterministic
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A Model of Diffusion

Each person may:

Keep their own policy
Copycat a neighbor's policy

Combine two policies

Slightly change their policy
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A Genetic Model of Diffusion

Each person may:

Keep their own policy
Copycat a neighbor's policy

Combine two policies

Slightly change their policy

} Cloning

Crossover

Mutation
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Bringing it together

Our model can be viewed from multiple 
perspectives.

Hopefully it captures generic aspects of 
information dispersal in the context of

solving some problem.



Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

Slide 22 / 42

Outline

Genetic algorithm model
Diffusion of innovation model
Show and tell
Experiment
Results
Future work



Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

Slide 23 / 42

Network Topologies

Spatial (fixed):
Breeding neighborhood defined by “in-radius”

Spatial (dynamic):
The agents move in the world

Random (fixed):
Erdös-Renyi random graphs

Random (dynamic):
Network “rewired” each generation.



Model Demo
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What's the “problem”?

We used hyperplane-defined functions (HDFs).

Goal: produce a certain pattern of bits.
 
                 ...*****11100**00101********...
 

In the fitness function:
some sub-patterns are rewarded (schemata)
some sub-patterns are penalized (pot-holes)



Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

Slide 27 / 42

Constant parameters

Population size: 256
Crossover rate: 0.7
Mutation rate: 1 / [ 2 x length_of_bitstring ]
Tournament selection with tournament size 3

“Spatial dynamic” specific parameters
wiggle-angle amount = between -15 and 15 degrees
forward-step amount = 1% of world diagonal.
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Experiment 1

Vary the network density from 0% to 100%
Run the model until a “perfect” solution is found.
Measure how many generations it took.
(Give up after 3000 generations.)

We ran 60 repetitions for each network 
density, and present the average.
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Observations

The genetic algorithm is robust, even for 
sparse networks (≤ 5% density).

We can't see much else.
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Experiment 2

Vary the network density from 0% to 5%
Run the model until a “perfect” solution is found.
Measure how many generations it took.
(Give up after 3000 generations.)

We ran 60 repetitions for each network 
density, and present the average.
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Primary Question (revisited)

How sparse can the breeding networks be,
 such that the genetic algorithm still works?
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Primary Question (revisited)

How sparse can the breeding networks be,
 such that the genetic algorithm still works?

Answer:

It depends somewhat on the network topology, 
but our results suggest < 2%
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New Question

It appears that at very low densities:
random is better than spatial
dynamic is better than fixed

               Why?
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Why?

Giant component?
Spatial fixed in particular is segmented.

(Dynamic) average path length
Less time to spread good news everywhere.

(Dynamic) clustering coefficient
Faster rate of initial dispersion.
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Extensions

More network topologies
Small world networks   (Watts/Strogatz)
Scale-free networks     (Barabasi)

Explore mutation rate
Do destructive mutations kill innovation 
before it has a chance to spread?

Vary the rate of agent movement
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