Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

Forrest Sondahl forrest@northwestern.edu

William Rand wrand@northwestern.edu

July 14, 2007

NORTHWESTERN UNIVERSITY

Center for Connected Learning and Computer-Based Modeling

http://ccl.northwestern.edu/

Northwestern Institute on Complex Systems

http://www.northwestern.edu/nico/

Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

In an ABM, agents communicate.

These interactions form a social network.

We are interested in how the properties of these networks affect group problem solving abilities.

Outline

- Genetic algorithm model
- Diffusion of innovation model
- Show and tell
- Experiment
- Results
- Future work

Standard genetic algorithm (GA)

- Start with a tricky problem
 - e.g. scheduling elephant bath time

Represent possible solutions as bit strings

Bubs & Candy first, then Dumbo alone, then ...

= 🚺 = 10100101011110110110

Dumbo & Moony, then Bubs & Goober, then ...

= 001111011011011011011

"Bath Schedule" creatures

101001010111101101110 = 001111011011011011011 =

Fitness function:

How good is each bath schedule?

f () = poor = 0.3

Slide 5 / 42

Genetic operators

Slide 6 / 42

and repeat until satisfied...

Complete Breeding Networks

- In the standard genetic algorithm, every agent can breed with every other agent.
- This can be represented by a complete graph.

Slide 8 / 42

Restricted Breeding Networks

Slide 9 / 42

Why should we care?

- Theoretical knowledge in machine learning
 - They might perform better than standard GAs
 - Understanding evolutionary processes
- Applications (parallel GAs)
 - Peer to peer computing
 - Mobile and ad-hoc networks
 - Swarm robots, smart dust?

Primary Question

How sparse can the breeding networks be, such that the genetic algorithm still works?

Slide 11 / 42

Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

Outline

- Genetic algorithm model
- Diffusion of innovation model
- Show and tell
- Experiment
- Results
- Future work

- Organizations have social structure
- Individuals follow policies
 - ideas, problem-solving methods, etc
- Better "more innovative" policies diffuse through the social network, as individuals adopt those policies.

Slide 14 / 42

Slide 15 / 42

Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

Diffusion of Innovation

Slide 16 / 42

Slide 17 / 42

Complexifications

- Policies could be multi-faceted
- Agents could take pieces of policies from other agents
- Adoption shouldn't be deterministic

A Model of Diffusion

- Each person may:
 - Keep their own policy
 - Copycat a neighbor's policy
 - Combine two policies
 - Slightly change their policy

A Genetic Model of Diffusion

- Each person may:
 - Keep their own policy
 - Copycat a neighbor's policy
- Cloning
- Combine two policies
 Crossover
- Slightly change their policy
 Mutation

Bringing it together

Our model can be viewed from multiple perspectives.

Hopefully it captures generic aspects of information dispersal in the context of solving some problem.

Outline

- Genetic algorithm model
- Diffusion of innovation model
- Show and tell
- Experiment
- Results
- Future work

Network Topologies

- Spatial (fixed):
 - Breeding neighborhood defined by "in-radius"
- Spatial (dynamic):
 - The agents move in the world
- Random (fixed):
 - Erdös-Renyi random graphs
- Random (dynamic):
 - Network "rewired" each generation.

Slide 23 / 42

Model Demo

Outline

- Genetic algorithm model
- Diffusion of innovation model
- Show and tell
- Experiment
- Results
- Future work

What's the "problem"?

- We used hyperplane-defined functions (HDFs).
- Goal: produce a certain pattern of bits.

...****11100**00101*******...

- In the fitness function:
 - some sub-patterns are rewarded (schemata)
 - some sub-patterns are penalized (pot-holes)

Slide 26 / 42

Constant parameters

- Population size: 256
- Crossover rate: 0.7
- Mutation rate: 1 / [2 x length_of_bitstring]
- Tournament selection with tournament size 3
- "Spatial dynamic" specific parameters
 - wiggle-angle amount = between -15 and 15 degrees
 - forward-step amount = 1% of world diagonal.

Slide 27 / 42

Outline

- Genetic algorithm model
- Diffusion of innovation model
- Show and tell
- Experiment
- Results
- Future work

Experiment 1

- Vary the network density from 0% to 100%
 - Run the model until a "perfect" solution is found.
 - Measure how many generations it took.
 - (Give up after 3000 generations.)
- We ran 60 repetitions for each network density, and present the average.

Easier Problem (HDF100) 3000 2750 2500 2250 mean generations to solution 2000 1750 spatial fixed spatial dynamic 1500 random fixed 1250 🔭 random dynamic 1000 750 500 250 HUM 0 0% 20% 40% 60% 80% 100%

network density

Harder Problem (HDF200)

Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

Observations

- The genetic algorithm is robust, even for sparse networks (≤ 5% density).
- We can't see much else.

Experiment 2

- Vary the network density from 0% to 5%
 - Run the model until a "perfect" solution is found.
 - Measure how many generations it took.
 - (Give up after 3000 generations.)
- We ran 60 repetitions for each network density, and present the average.

Primary Question (revisited)

How sparse can the breeding networks be, such that the genetic algorithm still works?

Slide 36 / 42

Primary Question (revisited)

How sparse can the breeding networks be, such that the genetic algorithm still works?

Answer:

It depends somewhat on the network topology, but our results suggest < 2%

Slide 37 / 42

Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

New Question

- It appears that at very low densities:
 - random is better than spatial
 - dynamic is better than fixed

Why?

Slide 38 / 42

Outline

- Genetic algorithm model
- Diffusion of innovation model
- Show and tell
- Experiment
- Results
- Future work

Why?

- Giant component?
 - Spatial fixed in particular is segmented.
- (Dynamic) average path length
 - Less time to spread good news everywhere.
- (Dynamic) clustering coefficient
 - Faster rate of initial dispersion.

Extensions

- More network topologies
 - Small world networks (Watts/Strogatz)
 - Scale-free networks (Barabasi)
- Explore mutation rate
 - Do destructive mutations kill innovation before it has a chance to spread?
- Vary the rate of agent movement

Multi-agent Communication Disorders: Dynamic Breeding Networks in Genetic Algorithms

- To my co-author, William Rand.
- To my advisor, Uri Wilensky, for his support.

Questions?