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Understanding scientific phenomena in terms of complex systems principles is both
scientifically and pedagogically important. Situations from different disciplines of
science are often governed by the same principle, and so promoting knowledge trans-
fer across disciplines makes valuable cross-fertilization and scientific unification
possible. Although evidence for this kind of transfer has historically been controver-
sial, experiments and observations of students suggest pedagogical methods for pro-
moting transfer of complex systems principles. One powerful strategy is for students
to actively interpret the elements and interactions of perceptually grounded scenar-
ios. Such interpretation can be facilitated through the presentation of a situation
alongside a description of how the agents in the situation are behaving, and by stu-
dents exploring and constructing computational models of the situation. The result-
ing knowledge can be both concretely grounded yet highly perspective dependent
and generalizeable. We discuss methods for coordinating computational and mental
models of complex systems, the roles of idealization and concreteness in fostering
understanding and generalization, and other complementary theoretical approaches
to achieving transfer.


When and how do students transfer what they have learned to new situations? This
is one of the most important questions confronting education and cognitive sci-
ence. Addressing it has crucial practical consequence while also touching on deep
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basic research issues related to learning, analogical reasoning, and conceptual rep-
resentation. Considerable research has suggested that students do not spontane-
ously transfer what they have learned, at least not to superficially dissimilar do-
mains (Detterman, 1993; Gick & Holyoak, 1980, 1983). This is disturbing,
because teachers choose content with the hope that students will apply what they
have learned to relevant new situations. We believe that students can transfer scien-
tific principles across superficially dissimilar domains, and we are not alone in this
belief (Bransford & Schwartz, 1999; Jacobson, 2001; Judd, 1908; Simon, 1980).
To present our case, we describe kinds of transfer that are worth “fighting for.”
Identifying these turns out to be not only an educational question, but a scientific
question as well. Accordingly, we describe an approach toward science that seeks
to unite phenomena from disparate domains according to general principles that
govern complex systems. This complex systems approach to science offers unique
educational opportunities for imparting scientific understanding that is both con-
cretely grounded yet widely applicable across many domains.


The notion of a grounded generalization may sound like an oxymoron, but it is
key to our account of transfer. The time-honored method for conveying generaliza-
tions has been to use symbolic formalisms such as predicate logic or algebra.
These formalisms can enable a student to transcend the specifics of a situation, but
they also run the risk of disconnecting the resulting abstraction from an intuitive
understanding of the situation. Instead, we propose learning and teaching methods
that promote situation construals that are concrete insofar as they are perceptually,
temporally, and spatially grounded. However, they are still idealizations in that
many elements of a situation are ignored or highly simplified.1 In this article, our
argument for how to achieve grounded generalizations involves the following
steps: (1) Describe the nature of complex systems accounts of science, (2) provide
examples of general complex systems principles that appear in several case stud-
ies, (3) describe pedagogical benefits of teaching science through complex sys-
tems, (4) discuss the importance of transfer and generalization in relation to
complex systems, (5) present a method for achieving generalization through per-
ceptually grounded yet interpreted simulations, and (6) compare generalization
from grounded simulations to formalism-centered strategies and other methods for
achieving transfer. Our goal in integrating complex systems (Steps 1–3) with trans-
fer (Steps 4–6) is that we believe that recent grounded modeling approaches to
complex systems offer pedagogical innovations that promote transfer of scientific
knowledge and that, reciprocally, the cognitive science of how people transfer
what they have learned offers specific suggestions for teaching increasingly perti-
nent topics in complex systems.
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1See also the notion of situated abstraction in the section “Comparison to Existing Approaches to
Transfer.”
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CONNECTING SCIENCE WITH COMPLEX SYSTEMS
PRINCIPLES


One way to advance science is to progressively flesh out theories, adding experi-
mental details and elaborating mechanistic accounts. By this account, “the devil is
in the details,” and the proper occupation of scientists is to pursue these details.
This vision of science was most emphatically painted by John Horgan in his 1996
book The End of Science. He argued that the age of fundamental scientific theoriz-
ing and discoveries has passed, and that all that is left to be done is to refine the de-
tails of theories already laid down by the likes of Einstein, Darwin, and Newton.
The rapid rate of scientific specialization seems to support Horgan’s argument. We
have gone from an era when the only major scientific journals were Nature and
Science to an era with specialized journals such as the Journal of Contaminant Hy-
drology and the Journal of Shoulder and Elbow Surgery, each an umbrella outlet
for several distinct subspecializations. Yet many scientists feel compelled to spe-
cialize to still further degrees because of the sheer volume of scholarly output that
competes for their eyes and minds.


One group of scientists that has chosen to reverse the trend toward increasing spe-
cialization is complex systems researchers. With historical roots in cybernetics and
general systems theory, the field of complex systems theory has been rapidly devel-
oping over the past few decades (Bar-Yam, 1997; Holland, 1995, 1998; Kauffman,
1993; Wolfram, 2002). Complex systems researchers study how relationships be-
tween elements within a system give rise to emergent properties of the system, and
how the system interacts and forms relationships with its environment (Jacobson &
Wilensky, 2006). The “systems-level” perspective emphasizes that understanding
howapartof a systembehavesdependsuponunderstanding thesystem’sotherparts,
and that the system as a whole has properties and organization that cannot be de-
duced from a consideration of the parts in isolation (Holland, 1998; Kauffman,
1993). Although the complex systems research community is diverse, some com-
mon assumptions are the following: (a) Many natural systems operate at multiple
distinct levels of organization; (b) such systems involve nonlinear interactions
among the system’s elements including positive and negative feedback loops; (c)
even when the only interactions that exist in a system are among its individual ele-
ments, important macroscopic descriptions can still be applied to the system as a
whole and are critical for understanding its patterns; (d) system-level patterns can
emerge without any force explicitly striving for the pattern, through the self-orga-
nized activity of many interacting elements; and (e) the same system pattern can of-
ten be found in diverse domains, and it is useful to describe systems in sufficiently
general terms such that these commonalities can be revealed. Consistent with this
fifth point, researchers have pursued principles that apply across many scientific do-
mains, from physics to biology to social sciences. Their general claim is that the
samecomplexsystemsprinciplecandescribeseeminglyverydifferentphenomena.
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One major thread of complex systems research has focused on formal equations
that summarize the dynamics of a natural phenomenon. Examples of this approach
include fitting power-law equations to earthquake magnitude and frequency data
(Bak, 1996) or differential equations to the populations of predators and prey over
time (Lotka, 1925). These equations turn out to have applicability that goes far be-
yond their original domains. Power laws have been implicated in the distribution
of connections within actor, neural, power grid, and telephone networks (Barabási,
2002; Barabási & Albert, 1999). Differential equations describing predator–prey
dynamics have been recruited to model chemical reactions and business cycles
(Ball, 1999).


Within the complex systems community, there is another major thread that
strives to build computational models that, when run, generate critical aspects of
the behavior of natural systems. This approach is known as agent-based modeling,
or ABM (Epstein, 2007; Epstein & Axtell, 1996; Goldstone & Janssen, 2005;
Miller & Page, 2007; Railsback, Lytinen, & Jackson, 2006; Wilensky, 2001a;
Wilensky & Rand, in press). These models contain numerous distinct elements
(agents) that move and interact, resulting in a system globally changing over time
(also known as an emergent phenomenon). Unlike the macroscopic-equation ap-
proach to complex systems, the goal is not simply to describe the high-level behav-
ior of a system but to provide a model that generates the macroscopic behavior
from the behavior and interactions of lower level agents. In this way, ABMs create
an explicit causal link between the micro-level elements of a system and its
macro-level global behavior, thus providing an explanation at a lower level for the
global behavior. ABMs are typically implemented as computer programs. The pro-
grams create a population of agents and specify rules of behavior for each of the
agents. These rules are typically very simple, such as “Look ahead, turn and move
forward,” but they can also be more elaborate and governed by mathematical equa-
tions. Crucially, program implementers do not explicitly program in the global be-
havior of the system as they would if they were creating a plot of a macroscopic
equation. Instead they program the rules for the individual agents, and the high-
level system behavior emerges from the unfolding agent actions and interac-
tions. The aforementioned predator–prey dynamic provides an illustrative contrast
between ABMs and equation-based complex systems approaches. The macro-
scopic-equation approach involves two coupled differential equations: one that de-
scribes the change in the population of predators, and the other the population of
prey. Only overall populations, not individual predators and prey, are factors in the
differential equations. The equations, when iterated, produce oscillating popula-
tions. In contrast, an ABM approach would create many separate animal agents—
one for each predator and prey—and assign them locations in space. Rules de-
scribe how the animals move, eat one another, and reproduce; and each agent indi-
vidually follows its rules. Macroscopic properties such as predator and prey popu-
lation levels can be analyzed and plotted (see Figure 1a), but they do not explicitly
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play a role in determining how the system will behave in the future given the pres-
ent state (see Wilensky & Reisman, 2006, for a fuller account of this example).


In what follows, we are mostly concerned with the ABM approach to complex
systems because we believe it offers a potentially promising method for fostering
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FIGURE 1 Two systems with oscillating behavior. These phenomena seem very different,
but they can be viewed as two examples of a general complex systems principle. (a) An
agent-based computer simulation of oscillating populations in wolf–sheep predation (from
Wilensky, 1997b). The left panel shows a snapshot of wolves (black), sheep (white), and grass
(green), and the right panel shows fluctuations in their populations over time. (b) An agent-
based simulation of oscillating levels of chemicals in the Belousov–Zhabotinsky reaction (from
Wilensky, 2003). (c) A photo of the physical Belousov–Zhabotinsky reaction taking place
around a star-shaped stamp (photo courtesy of Kyle Bishop and Bartosz Grzybowski; see http://
dysa.northwestern.edu/).
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transferable understandings of complex systems. It is promising because it occu-
pies a unique, bridging position between concrete and general accounts of phe-
nomena. On the one hand, ABMs are concrete in that they posit objects that corre-
spond to the individual elements within a system. On the other hand, they are
general in that the models are often idealizations that strip away attributes of the
elements that are extraneous for a particular purpose. The sheep and wolves in Fig-
ure 1a have neither wool nor fangs. They are represented in terms of their coordi-
nates in a two-dimensional space and in the specific conditions for their partici-
pating in events such as reproducing, eating grass, or eating sheep. This idealized,
stripped-away representation is helpful in promoting transfer to other domains that
have the same relations among their elements. An important point implicit in this
characterization of ABMs is that the pivotal difference between equations for mac-
roscopic properties of complex systems and ABMs is not whether they are equa-
tion based. Both typically are formal. The pivotal difference is whether the equa-
tions, or rules, are describing the macro-level behavior of the entire system or the
micro-level behavior of elements.2


We are not arguing that a cross-discipline, complex systems approach to sci-
ence is superior to a specialist’s focus on the details of a single domain. Both ap-
proaches are necessary for a complete science, and in fact it is only by understand-
ing a system’s details that researchers can determine the general principles by
which it is governed. However, given the climate of progressive specialization in
contemporary science, it is important to remember that many of the most notewor-
thy advances of science have involved finding deep principles shared by seemingly
dissimilar phenomena.


Practicing what we preach, we present a couple of grounded examples of spe-
cific complex systems principles and how they might be instantiated by ABMs. A
commonly found system architecture in nature is the following:


Pattern 1: An entity causes more entities like itself to be produced. At the same time,
it causes another kind of entity to be produced that eliminates the first entity.


Thepreviouslydescribedexampleof this iswhenprey(e.g., sheep)producemoreprey
through reproduction and also increase the number of predators (e.g., wolves) by pro-
viding biomass energy while the predators cause prey to be eliminated through preda-
tion. A second instantiation of this pattern is the Belousov– Zhabotinsky chemical re-
action (see Figures 1b and 1c), in which one chemical is involved in a reaction that
produces more of itself and a second chemical while the second chemical removes the
first chemical by reacting with it (Kapral & Showalter, 1995). Both systems can be de-
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2Although we do not use this argument herein, elsewhere we have argued that rule sets are a supe-
rior form of representation to equations for exploring, understanding, and explaining the behavior of a
complex system (Wilensky, 2006).
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scribed by very similar differential equations called reaction–diffusion systems (Ball,
1999) and show the same large-scale patterns over time. Both systems can also be de-
scribed by an ABM (see Wilensky & Reisman, 1998, 2006; Wolfram, 2002). Macro-
scopically, both systems produce oscillating amounts of the two entities, and the pat-
tern of distribution is often a dynamically moving spiral.


Pattern 2: Many individual elements move randomly. If a moving element touches
another element, it becomes attached. The emergent result is a fractally connected
branching aggregate.


This process, called diffusion-limited aggregation, has been implicated in the
growth of human lungs (Garcia-Ruiz, Louis, Meakin, & Sander, 1993), frost on
glass (Bentley & Humphreys, 1962; Halsey, 2001), and cities (Batty & Longley,
1994). As with the reaction–diffusion systems, the individual elements of different
diffusion-limited aggregation systems are highly dissimilar, but the interactions
between the elements can be captured by very similar agent-based rule sets
(Bar-Yam, 1997; Wilensky, 1997a). The resultant overall patterns of thin, fractally
connected branches are remarkably similar and have almost identical statistical
properties (Ball, 1999; see Figure 2 for an example).
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FIGURE 2 An agent-based computer simulation of diffusion-limited aggregation (see
Wilensky, 1997a). Moving elements (shown as dots) are added to the system one at a time.
When they come into contact with one of the static elements (shown as branches), they become
attached to the static element.
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Apart from the cross-fertilizing scientific benefits accrued by applying princi-
ples from one domain to new domains, there are also pedagogical benefits for the
cross-domain integrations provided by complex systems. Students are often heard
to complain that their science classes are too particularistic (Wicklein & Schell,
1995). These students feel that they are asked to go from subject to subject but are
not given tools for making connections between subjects and seeing the coherence
among them. Theories from complex systems can provide these organizational
frameworks. Blikstein and Wilensky (2005, 2006) have found, for example, that
undergraduates studying crystal growth in a materials science class often “mix and
match” different levels of explanation to solve crystal growth problems. Typically
they use equations (such as the Laplace-Young or flux equations) and/or heuristics
(such as “large grains grow, small grains shrink”) to solve these problems. In a
study of a group of undergraduates. Blikstein and Wilensky found that students
had fragmented views of the process of crystal growth, seeing it as a set of related
but distinct subprocesses. This lack of a coherent view was troubling for these stu-
dents, and they recognized that they failed to see the different subprocesses as fall-
ing under a broad principle. In contrast, the students in the same class using the
MaterialSim models (Blikstein & Wilensky, 2004a, 2004b) easily attained insight
into the mechanism of crystal grain growth (Blikstein & Wilensky, 2005, 2006).
Furthermore, they came to see many apparently different instances of crystal
growth as instances of the general principle of energy minimization. We have often
seen students, through coming to understand this powerful general principle and
understanding how it works out in the micro-mechanisms of the relevant phenom-
ena, apply the principle in other domains (Blikstein & Wilensky, 2006).


Another example: One of our students who learned about positive feedback sys-
tems from an example of a microphone feeding into, and placed near, a loud-
speaker was spontaneously reminded of this example when she was discussing a
scenario involving people purchasing products that other people had already pur-
chased. The reminding was apt. Both situations are instantiations of positive feed-
back systems, where the presence of an attribute in a system variable leads to fur-
ther increase of the same attribute. Furthermore, seeing the similarity in the two
situations enabled an inference: When two products compete in the marketplace, if
one gets a lead, for whatever reason, positive feedback will result in its increasing
its lead regardless of the relative quality of the two products.3 The principles of
complex systems are naturally applicable in many, often seemingly unrelated, situ-
ations. This is because the principles are expressed in generic terms such as ele-
ment, agent, resource, inhibition, excitation, interactions, connection, motion,
force, neighbor, energy, and strength. Some examples of complex systems are pre-
sented in Table 1. There are other approaches that also advocate descriptions at a
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3The case of VHS and Betamax video recorders is often described as a case in which the technically
inferior product won out through positive feedback (Arthur, 1988, 1989).
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generic level that are still grounded, such as pragmatic reasoning schemas (Cheng
& Holyoak, 1985) and spatial diagrams (Novick, 2006), but the terms of complex
systems tend to be more dynamic and tailored for representing physical situations.


The principles of complex systems can be expressed generically, but we do not
advocate this as a stand-alone pedagogical procedure. The principles are typically
very difficult to understand when presented only in a generic form but highly intu-
itive when instantiated in a case study. However, the existence of the generic de-
scription level does offer opportunities for transfer between dissimilar scenarios.
When a case study of a complex systems principle is presented in a way that the ge-
neric principle to be understood, either implicitly or explicitly, then there is poten-
tial for transfer. This will most typically not be achieved by simply presenting a
single case study (Detterman, 1993). It is more likely to be achieved by having
people experience and compare multiple case studies of the same principle (Gent-
ner, Loewenstein, & Thompson, 2003; Gick & Holyoak, 1980; Kurtz, Miao, &
Gentner, 2001), explain the case studies to themselves (Ainsworth & Loizou,
2003; Graesser & Olde, 2003), or construct explicit (e.g., computational) models
of the cases (Resnick, 1996; Wilensky, 1999a; Wilensky & Reisman, 1998, 2006).


Benefits of a Complex Systems Perspective


As suggested by the above analysis, complex systems cases are pedagogically
valuable because they give students fresh and fertile perspectives. In addition to
this general benefit, there are a number of other benefits that we briefly describe
here.


Inductively rich perspectives. Situations that are dissimilar according to
most perspectives are seen as deeply related by a complex systems perspective.
The student or scientist armed with a model of diffusion-limited aggregation (see
Figure 2) may see striking similarities between lungs and window frost that are
missed by most others—both consist of fractal arrangements of branches on
branches. Although highly perspective dependent, complex systems concepts are
inductively potent. Once frost is appreciated as an example of diffusion-limited ag-
gregation, one can predict how it will change with time, how it will be affected by
temperature, what shapes it can and cannot attain, and so on.


Bridging explanations. Learning complex systems cases (either through a
specialized complex systems course or through the integration of complex systems
materials in a subject area course) gives students experience with an under-
represented but vitally important skill for science—explaining large-scale, mac-
ro-level phenomena in terms of local, micro-level events. The principles provide
explanations of phenomena that bridge two levels, explaining, for example, how
organized economies can emerge from businesses each acting in self-interest, how
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the spiral structure of pine cones emerges from inhibition between individual
leaves as they grow, and how ordered thought emerges from neurons that simply
pass electrical and chemical signals among themselves. The explanations are satis-
fying because they provide comprehensible mechanisms for otherwise mysterious
objects and events, and because they explain the entities at a global level in terms
of better understood elements that are less assumptive (Jacobson & Wilensky,
2006).


Researchers have noted that bridging between levels is difficult cognitive work.
Chi (2005) argued that misconceptions of systems with emergent processes are
particularly resistant to correction because students must typically make a concep-
tual shift across ontological kinds. Wilensky and Resnick (1999) and Penner
(2000) specifically attributed the difficulty in understanding complex systems to
the need to connect phenomena occurring at the microscopic level with those that
occur at the macroscopic level. Wilensky and Resnick (1999) showed that people
often use nonemergent constructs to bridge the levels, construing the relation be-
tween the macro and the micro in terms of the metaphors of hierarchy or contain-
ment. Wilensky and Resnick have also described a resistance to emergent explana-
tions (Resnick, 1994, 1996; Resnick & Wilensky, 1993, 1998; Wilensky, 1999a,
2001a; Wilensky & Resnick, 1995, 1999). They have described two components of
this resistance: (a) a tendency to understand complex phenomena as orchestrated
by a leader or designed by a single entity and (b) a resistance to seeing randomness
as constructive of order and pattern. Together they refer to these two components
as the deterministic-centralized mindset (or DC mindset for short; Resnick &
Wilensky, 1993; Wilensky & Resnick, 1995, 1999).


Unlike Chi, Wilensky and colleagues have not located the difficulties with rea-
soning about emergence in a need for an ontological shift. Rather, they have lo-
cated the difficulties in cognitive load limitations of computing interactions of
large numbers of objects, limitations in perception of objects at multiple scales and
a lack of micro-level contextual clues (Sengupta & Wilensky, in press; Wilensky,
1993). When these obstacles are minimized, Levy and Wilensky (2008) have
found that students can spontaneously bridge levels. Through interaction with
ABM environments that reduce cognitive and perceptual limitations, students are
able to use extant object-based resources to reason about emergence (Sengupta &
Wilensky, 2006, in press). Wilensky, Hazzard, and Longenecker (2000) described
stages in eighth graders’ development of emergent reasoning. The students typi-
cally start in Stage 1 by paying attention to a single level. Then they move on to
Stage 2, or being able to move between levels but still seeing the aggregate level as
a simple collection of individuals, sometimes referring to the macroscopic level as
an “illusion,” claiming that only the individual level is real. In Stage 3 they see the
emergent level as a new entity, its properties different from those of its constitu-
ents. Finally, in Stage 4 they come to see all stable entities as emergent and as pro-
cesses in some kind of dynamic equilibrium.
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Researchers have also stressed another difficult aspect of bridging levels—the
need to understand not only the lower level structures, but also their interactions
(and mechanisms of interaction), functions, and behavior (Centola, Mckenzie, &
Wilensky, 2000; Jacobson & Wilensky, 2006; Resnick & Wilensky, 1998; Wilen-
sky & Reisman, 2006). Hmelo-Silver and Pfeffer (2004) found that the largest dif-
ference between expert and novice mental models of complex systems, such as
aquarium ecosystems, is in terms of how the parts function and behave with re-
spect to one another, not in terms of their intrinsic structures. It is understanding
the interactions among parts that promotes expertise and true bridging explana-
tions. For this purpose, ABM approaches to complex systems offer powerful ad-
vantages over equation-based descriptions for complex systems because ABMs in-
herently focus on the rules governing the agents’ interactions, letting the higher
level description fall out of the system rather than having an equation as an as-
sumed starting point. By contrast, an equation-based approach that explicitly mod-
els macroscopic qualities such as population or temperature can encourage the
false belief that these macroscopic properties follow their own independent laws
rather than having bridges to elemental interactions (Chi, 2005).


Grounding for formalisms. Complex systems provide an appealing entry-
way to learning tools in mathematics and computation. A shared mathematical for-
mulation applies to frost and lungs, and attaining fluency with the formulation is
important for proving properties of the systems’behaviors and making quantitative
predictions. However, without a bridge between the formalisms and the systems,
the mathematics is frequently conceptually inert and opaque. A complex systems
perspective provides a bridge because classes of system behaviors can be tied to
classes of formalism.


Well-known equations describe the macroscopic behavior of the ABMs that we
have described. For example, whenever a substance travels across a lattice of fixed
agents and the total amount of substance is conserved, standard equations for dif-
fusion are applicable. When substances are transmitted across the agents without
conservation, equations for epidemic spread are applicable. People who bring to
mind a schematic complex systems model when they are faced with its associated
equation or rule set are much more likely to be able to reason flexibly about the be-
havior of the formalism. In this way, complex systems give students and research-
ers tools to connect formalisms to real-world phenomena. Formalisms can bring to
mind characteristic situations, simultaneously grounding the formalism and add-
ing a productive perspective to the situation.


Cross-fertilization between sciences. The central thesis of complex sys-
tems is that apparently unrelated systems often exhibit a common underlying prin-
ciple. This thesis is a welcome antidote to the frequently myopic and alienating na-
ture of scientific specialization. The aggregation of slime molds, the changing
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popularity of musical styles, and the development of regional centers of technol-
ogy such as Silicon Valley can all be understood as positive feedback systems.
Sand piles, earthquakes, and human memory for temporal intervals can all be un-
derstood as systems that naturally adapt to a point of self-organized criticality gov-
erned by a 1/f power spectrum (Bak, 1996; Gilden, Thornton, & Mallon, 1995). As
noted by Bar-Yam (1997),


The study of the dynamics of complex systems creates a host of new interdisciplinary
fields. It not only breaks down the barriers between physics, chemistry and biology,
but also between these disciplines and the so-called soft sciences of psychology, soci-
ology, economics, and anthropology. (xii)


Taking this perspective, one can view science itself as a complex system—its com-
ponent disciplines differentiate and aggregate, resulting in a dynamically trans-
forming reorganization of the scientific world (Börner, Maru, & Goldstone, 2004).


This cross-domain applicability of complex systems principles is valuable for
psychological investigations because it allows for a natural examination of the ex-
tent of transfer of a domain-general principle to different domains. Instead of cre-
ating word problems with different cover stories, or abstract schemas that can be
instantiated with different insight problems, one can select diverse domains that
naturally and intrinsically instantiate principles of complex adaptive systems. Sys-
tems are inherently rather than arbitrarily connected to their general principles
(Bassok, 1996).


STRATEGIES FOR PROMOTING TRANSPORTABLE
UNDERSTANDINGS


Now that we have described the benefits of organizing science according to com-
plex systems principles, our next agenda is to portray effective strategies for learn-
ing and teaching them. Generalizing beyond complex systems per se, we are in-
terested in methods for promoting transportable knowledge. By transportable
knowledge, we mean knowledge that is applied to domains significantly beyond
those presented when the knowledge was initially acquired. We begin by contrast-
ing a traditional strategy based on explicitly teaching formalisms with a method
based on presenting general principles in concretely grounded contexts.


Generalization Through Summary Formalisms


As a tool, mathematics has historically been an unparalleled device for distilling
situations to an essence. The formalizations provided by algebra, set theory, and
logic are immensely powerful because they are domain general. An equation for
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combinatorics is equally applicable to the worlds of manufacturing, sports, sci-
ence, and dining. Determining the number of handshakes if every person in a group
shakes hands with every other person is the same problem as finding the number of
possible chopstick pairs obtainable from a pile of chopsticks. Their common
combinatorical equation is the palpable proof of this sameness. The domain inde-
pendence of equations is the ultimate in the economy of scale to which mass pro-
duction aspires. Once methods for processing formalisms are derived and vali-
dated, then they can be applied off the rack to an infinite number of situations.
Customization is not only not required but forbidden within a consistent formal
system. By eliminating the content of a scenario and reducing it to a purely formal
equation, one is assured that the sanctioned transformations of the equation will be
valid. This focus on content-irrelevant processing has led some to quip that
formalists are not able to understand anything unless it is made meaningless
(Smullyan, 1983), but the advantages of all-purpose formalisms are too compel-
ling to let pass.


Given the attractiveness of formalisms, it is understandable that so many educa-
tors have been drawn to couch their explanations in terms of them. Mathematical
and logical formalisms are the epitome of devices for eliminating misleading su-
perficial features. Once equivalent manufacturing, sports, science, and dating situ-
ations have been couched in equations, it might be expected to be possible to
freely transfer knowledge from one domain to another. This notion is endemic in
high school mathematics curricula, which often feature abstract formalisms that,
once presented, are subsequently fleshed out by examples. Systematic analyses of
mathematics textbooks have shown that formalisms tend to be presented before
worked-out examples and that this tendency increases with grade level (Nathan,
Long, & Alibali, 2002). Word problems typically provide examples of the applica-
tion of formalisms rather than justifications for why the formalism was initially de-
veloped. The justification for a formalism, if provided at all, is usually based on
formal transformations of axioms.


Philosophers, mathematicians, and educators have noted the mismatch between
how mathematics is publicly presented and how it is actually practiced (Lakatos,
1976; Papert, 1972; Schoenfeld, 1992; Thurston, 1994). In their own published re-
search, mathematicians tend to provide formal proofs but not the visuospatial in-
spiration for the proofs. This has led mathematicians to complain that the true heart
of the proof, the intuitive conceptualization, is ignored in the formal description of
the proof steps themselves (Hadamard, 1949). The scholarly articles contain the
step-by-step, formally sanctioned steps, but if one wishes to understand where the
idea for these steps comes from, then one must attempt to generate the underlying
idea oneself, without much insight from the published report. The exterior face of
mathematics is presented without revealing the skeleton that is the source of the fa-
cial structures. This tendency to hide the conceptual structure has spread from the
research to educational mathematical community. In mathematics textbooks, ei-
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ther formalisms are treated as givens or, when they are derived, they tend to be de-
rived formally from other formalisms.


Mathematicians, mathematical historians, and mathematics educators have la-
mented the dissociation between explicit presentations of formalisms and the vi-
sual and bodily intuitions that drive the formalisms but are left out of the presenta-
tion (Lakatos, 1976; Mazur, 2003; Papert, 1980; Poincare, 1908; Wilensky, 1993).
The cognitive scientists Lakoff and Nuñez (2000) argued that traditional mathe-
matics education, with its emphasis on symbolic formalisms, bans exactly the kind
of images, metaphorical thought, signs, and pictures that make mathematics one of
the most imaginative activities of humankind. Their proposed solution is to teach
mathematics by using the conceptual, embodied metaphors that were the original
motivations for the formalisms. Arguing against claims that mathematics must be
decontextualized to be transportable, these researchers showed that even mysteri-
ous quantities like i and mysterious equations like eip = –1 arose from the
grounded experience of mathematicians at the time of discovery and can still now
be made intuitive and grounded in experience.


The assumptions of the “formalism-first” approach to promoting generalization
across domains are there: (a) If an equation is known, it should be able to be recog-
nized and applied when it is relevant in a new situation; (b) generalizations are ob-
tained by eliminating superficial features of a scenario, and this is achieved by
distilling the scenario to its formalism; and (c) potential for generalization is maxi-
mized by creating the most formal, content-reduced representation.


We question these assumptions and the resulting conception of generalization
via equations. We question the first assumption because the connection between
equations and scenarios is typically indirect and difficult to see. Students often
have difficulty finding the right equation to fit a scenario even when they know
both the equation and the major elements of the scenario (Ross, 1987, 1989). We
question the second assumption because elements that are construed as superficial
often turn out to be critical for understanding a system. Bassok (1996; Bassok,
Chase, & Martin, 1998) has found that people assume and create connections be-
tween semantic aspects of the elements in word problems and their roles in equa-
tions. For example, a problem requiring the number of apples to be divided by the
number of baskets is easier to solve than one requiring baskets to be divided by ap-
ples. Students can use the semantic relation PLACE IN [apples, baskets] to infer
the mathematical roles of apples and baskets in the DIVIDE [dividend, divisor]
structure (Bassok, 2001). Formally equivalent word problems are not treated
equivalently, and if natural parallels between semantic aspects and mathematical
roles are honored, then understanding is promoted. We question the third assump-
tion because, even though formalisms are maximally content independent, they
run the risk of being cognitively inert. They offer little by way of scaffolding for
understanding, and they may not generalize well because cues to resemblance be-
tween situations have been stripped. For example, there is experimental evidence
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that students who have taken an entire course in formal logic do not transfer what
they have learned to reasoning problems outside of the class. By contrast, instruc-
tion in more grounded pragmatic reasoning schemas such as the permission
schema “If the action is to be taken, then the precondition must be satisfied” pro-
duces better transfer despite the more specific nature of the schemas (Cheng,
Holyoak, Nisbett, & Oliver, 1986).


Generalization Through the Interpretation of Grounded
Situations


We are in agreement with the formalism-first position that generalization is a valu-
able goal. Very often principles are taught in the hope that they will be applied
whenever they are useful in the future. However, we offer an alternative method for
promoting generalization that we believe is more likely to be successful. The moti-
vation for this method stems from our observation of students learning principles
of complex systems using computer simulations. We have observed that students
often interact with the simulations by actively interpreting the elements and their
interactions. Their interpretations are grounded in the particular simulation with
which they are interacting. However, because the interpretations may be highly se-
lective, perspectival, and idealized, the same interpretation can be given to two ap-
parently dissimilar situations. The process of interpreting physical situations can
thus provide understandings that are grounded yet transportable. We ground our
notion of interpretive generalization with a “simulated annealing” principle ex-
ample from our Complex Adaptive Systems courses (see http://cognitrn.psych.
indiana.edu/rgoldsto/complex/p747description.htm and http://ccl.northwestern.
edu/courses/complexity/). This scientific principle is elucidated using two com-
puter simulations that can be downloaded from http://cognitrn.psych.indiana.edu/
rgoldsto/complex.


Simulated annealing refers to a search technique that makes use of randomness
in order to find optimal solutions to a problem (Kirkpatrick, Gelatt, & Vecchi,
1983). In actual annealing, ductile metal structures are formed by first heating then
gradually cooling the metal. At high temperatures, the atoms of the metal have
high mobility with respect to one another. If the metal is cooled slowly, thermal
mobility is gradually lost. The atoms arrange themselves to form a pure crystal,
thereby increasing the strength of the structure. Similarly, the notion of simulated
annealing is to gradually reduce the randomness in a system. Early on, randomness
helps the system sample different candidate solution spaces. Later on, stability
helps the system settle down into a single strong solution. In order to find the best
solution (the global minimum) rather than solutions that are merely better than
their neighbors (local minima), it is often necessary to temporarily increase the
randomness in the system.
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Dropping Balls. A classic domain involving simulated annealing is balls
dropping on a user-drawn landscape, as shown in Figures 3 and 4. Having students
imagine a ball rolling with some randomness on a landscape is one of the most
commonly used analogies for teaching simulated annealing. Small red balls fall
according to three rules: (a) A ball will tend to fall downward because of gravity,
(b) a ball also moves with a user-controlled degree of randomness (because of
“chance winds”), and (c) if a ball’s movement would place it on a user-drawn green
patch (the landscape), then it does not move. Learners are given the general goal of
developing an automatic strategy that will cause the balls to fall to the lowest re-
gion of the landscape they draw. The learner can control several aspects of the sim-
ulation by manipulating buttons, sliders, and the cursor. The learner can reset the
balls’ positions to the top of the screen, start and stop the balls’ movements, clear
the screen of all landscape, and enter in four different modes of interaction: draw
landscape, erase landscape, place balls, and move balls. By manipulating sliders,
learners can change five parameters of the simulation: the number of balls that are
dropped, the amount of randomness in the balls’ movements, the amount of move-
ment at each time step, the size of the pen used for drawing, and the frequency of
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FIGURE 3 A screen-dump from the Dropping Balls simulation (Goldstone, 2005b) before
the balls have completely dropped onto the landscape. User-controlled buttons and sliders, and
the continuously updating graph, are shown on the left side. In the right window is a dynami-
cally changing environment in which balls are dropping, landscapes are drawn and altered, and
balls are selected and moved.
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updating a running graph that shows the average depth of the balls over time. These
parameters can be manipulated with immediate impact on the simulation. Starting
with the configuration of balls and the user-drawn landscape in Figure 3, Figure 4
shows two possible end states. If the amount of randomness is never very large, or
if the amount of randomness is reduced too quickly, then local minima are likely to
arise. A local minimum occurs if a ball falls to rest in a valley that is not the deepest
valley of the landscape. If randomness is gradually reduced and thus consistent
with simulated annealing, then all of the balls will eventually come to rest at the
lowest spot on the landscape.


Path Finder. The second example of simulated annealing involves finding a
pathway to a specified location when there are obstacles in the way. The pathway
ideally connects two fixed blue points at the top and bottom of the screen, avoids
the green obstacles, and is as short as possible. In traditional artificial intelligence,
the search for a pathway through a maze is typically viewed as a process of a single
agent adding segments to its pathway and backtracking when dead ends are found.
The alternative method pursued here is to have very simple agents locally influ-
ence one another’s positions. Together, they globally form a path even though no
agent by itself represents an entire solution. In the Path Finder simulation, the
agents are represented as red balls. Each ball is assigned two “associate” balls,
making a set of balls arranged from first to last. There are also two fixed blue
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FIGURE 4 Two possible final configurations for the Dropping Balls simulation. If balls drop
without much randomness added to their movements, then the final configuration of balls will
typically show several local minima. A ball is in a local minimum if its location is lower than
neighboring locations but is not the lowest location for the whole landscape. If the amount of
randomness is gradually reduced as specified by a simulated annealing method, then all of the
balls will occupy the lowest position on the landscape.
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points. One is assigned to be one of the two associates of the first ball. The other
blue point is one of the associates of the last ball. The balls are then placed ran-
domly on the screen, and green obstacles are painted on the screen. On each time
step of the simulation, the red balls follow two rules: (a) Each ball moves toward
each of its two associates and also moves with a certain amount of randomness
controlled by a slider; and (b) if the location to which a ball would move is painted
green, then the ball does not move. The buttons and sliders are similar to those used
in Dropping Balls and are shown in Figure 5. Starting with the initially random con-
figuration in Figure 5, Figure 6 shows two possible final configurations of the balls.
In the configuration on the left, each of the balls is as close as it can get to its two as-
sociates without traveling through a green region. The configuration does not indi-
cate a strong pathway between the fixed points and is typical of the kind of pattern
that is found when the balls do not move with sufficient randomness or when the ran-
domness is reduced too quickly. These “knots” cannot be avoided if the balls do not
have some randomness that allows them to break out of arrangements that place
them as close to their associates as possible given the constraints of the third rule, but
they still are not globally good solutions. By contrast, the configuration on the right
shows the kind of pattern reached by using simulated annealing.
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FIGURE 5 A screen-dump from the Path Finder simulation (Goldstone, 2005a). In this initial
configuration, balls are randomly positioned on the screen. They move toward their pre-
specified two associates, unless the movement will place them on top of a patch.
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The situations in the left panels of Figures 4 and 6 are analogous (both showing
systems that are stuck in local minima), as are the patterns on the right panels (both
showing globally optimal solutions). Although these figures show some superfi-
cial similarities (red balls and green “blobs”), we continue to find transfer across
these simulations when the color and parameter slider similarities are removed
(Goldstone & Sakamoto, 2003). Furthermore, the superficial similarity between
red balls is inviting, but this is not the correct analogical correspondence. A single
red ball in Dropping Balls corresponds to the entire set of balls in Path Finder—
each represents a single solution to their respective problems of finding the lowest
valley and forming an efficient path, respectively.


Transporting simulated annealing. Our laboratory and classroom investi-
gations with these two demonstrations of simulated annealing have shown that stu-
dents can, under some circumstances, transfer what they learn from one simulation
to another (Goldstone & Sakamoto, 2003; Goldstone & Son, 2005). In our experi-
ments with college students who participate in 1-hr long sessions as part of their
Introductory Psychology course requirement, we first give students a 20-min pe-
riod of focused exploration with the Dropping Balls simulation because it embod-
ies simulated annealing in a canonical physical example. They are then given a
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FIGURE 6 Two possible final configurations for the Path Finder simulation. If the balls move
toward their neighbors without any randomness, then they will typically create “knots” that fail
to form a single coherent pathway between the endpoints. If the amount of randomness is gradu-
ally reduced, then coherent pathways are formed. These two possibilities are analogous to the
two possibilities shown in Figure 4.
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quiz of their knowledge of the simulation, and then we let students explore the Path
Finder simulation. We probe their understanding of the latter simulation through
(a) multiple choice questions designed to measure their appreciation of the princi-
ple of simulated annealing in the path-finding context and (b) open-ended ques-
tions in a structured interview about their conceptualization of the path-finding
scenario and its connection to the dropping balls scenario.


By using this method, we have found that students show better understanding of
the Path Finder simulation when it has been preceded by Dropping Balls than by a
simulation governed by a different principle. Better understanding was shown both
on explicit multiple choice quiz items as well as implicit action-based measures of
students’ interactions with the simulations. Student interviews revealed that a large
part of the positive transfer was due to training perceptual interpretations of
grounded situations. That is, experiencing Dropping Balls caused students to see
events in the Path Finder simulation in new ways. In a small way, our students ex-
perienced what Thomas Kuhn described as the perceptual transformation of the
world because of knowledge. Kuhn (1962) described how scientists, when ex-
posed to a particular theoretical paradigm, see physical phenomena in new ways:
“Though the world does not change with a change of paradigm, the scientist after-
ward works in a different world” (p. 121), and “during [scientific] revolutions, sci-
entists see new and different things when looking with familiar instruments in
places they have looked before” (p. 111).


Examples of transformed perceptual interpretations can be understood in con-
nection with Figure 6. Without experience with Dropping Balls, students looking
at the left panel of this figure typically described the final configuration in terms of
balls simply not finding good paths. When the students were pressed on why good
paths were not found, a typical response was, “The balls are attracted to each other
in small clumps, but there’s no reason that these small clumps should unite.” By
contrast, experience with Dropping Balls gave students an understanding of the
left panel as a local minimum. Students now saw attractive forces between
nonadjacent balls. In one student’s words, “The ball here would like to move over
there to be close to that ball, but it can’t because of the green blob, and so it stays
stuck.” Another student saw the left panel as a suboptimal situation in which “the
balls can’t get together because they are always trying to go straight for their neigh-
bors, but obstacles are in the way.” This interpretation, in turn, frequently gave the
students the insight necessary to create the coherent, globally optimal path. One
student reasoned as follows:


With no random movements, the balls will stay stuck forever. These balls are forever
trying to get together, but the obstacles won’t let them. So, we need to add some ran-
domness to the balls so they don’t always try the same thing. If one of these balls hap-
pens to move above this obstacle, then it can successfully move to its partner, and
bring all of the rest of the balls under it along for the ride.
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Another student was even more explicit about the pertinence of local minima for
Path Finder:


Sometimes the balls get stuck in a bad configuration. The only way to get them un-
stuck is to add randomness to their movements. The randomness jostles them out of
their bad solution and gives them the chance to find a real path.4


Although students rarely mentioned the connection between two simulations, it
is clear that their interpretations of the second simulation were affected by their ex-
periences with the first. What is most striking about the students’ descriptions of
Path Finder is the extent of knowledge-driven perceptual interpretation. Their on-
line interpretations of the behaviors of the balls are affected by their prior exposure
to a canonical simulated annealing situation. These interpretations are not simply
formalisms grafted onto situations. Rather, the interpretations affect the perception
of the simulation elements. The prepared students see attractive forces that create
clusters of balls, stuck configurations, and obstacles that could be skirted with the
injection of sufficient randomness. To the experienced eye, analogous perceptual
configurations are visible in both the Dropping Balls and Path Finder simulations.
Having a ball trapped in a shallow valley in Dropping Balls does not generally look
like a scrambled knot of balls in Path Finder. However, if one has understood the
principle of simulated annealing as applied to Dropping Balls, then one can form
an interpretation that makes the two situations perceptually similar. In both cases,
there is a less-than-ideal configuration that is stable. Randomness dislodges the
configuration, and when randomness is gradually reduced, a more ideal configura-
tion results. The elements of this interpretation are not purely formal elements like
mathematical or logical symbols. Randomness, stability, and dislodgment all have
perceptual signatures, and when these elements are selectively attended, the sce-
narios come to be seen as more similar than they originally were.


For this “grounded interpretation” account of generalization, transportable un-
derstandings come from the interaction between the physical elements of simula-
tions and the interpretations of those elements. Simply giving the interpretation is
not adequate. Like equations, stand-alone descriptions are unlikely to foster trans-
fer because of their lack of contact to applicable situations. When we simply give
students the rules for ball movements in Path Finder, students are seldom reminded
of Dropping Balls. Physically grounding a description is one of the most effec-
tive ways of ensuring that it is conceptually meaningful. Conversely, giving the
grounded situation but no interpretation is also inadequate. When the rules of ei-
ther Dropping Balls or Path Finder are withheld from students, there is a general
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4Education researchers have reported that access to controllable random events on a computer has
led many students to discover the value of randomness as a tool for getting unstuck (see, e.g., Papert,
1996, 2000).
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failure to transfer knowledge from one to the other. The insufficiency of the physi-
cal situation itself to provide a basis for reminding is consistent with evidence that
spontaneous remindings tend to be superficial (Gentner, Rattermann, & Forbus,
1993; Keane, 1988; Ross, 1987, 1989). A single ball finding a deep valley in Drop-
ping Balls does not bear much overall resemblance to a set of balls forming a co-
herent and short path in Path Finder. It is only when the interpretation is added to
the presentation of the situations that the resemblance becomes apparent.


It could be plausibly argued that the situations shown in Figures 3 and 5 actually
are fairly similar to each other because they involve red balls and green blobs.
However, we have found other examples of transfer from scenarios that have less
conspicuous similarity. Neural networks and foraging ants have been unified by
the principle of competitive specialization (Goldstone & Son, 2005), which states
that agents can often produce near-optimal coverage of a set of resources by re-
peatedly executing the steps of (a) randomly selecting a resource patch, (b) finding
the agent closest to this patch and moving it quickly toward the patch, and (c) mov-
ing all of the other agents more slowly toward the patch. Participants presented
with the ants and food scenario (left side of Figure 7) show transfer of this principle
to the neural detector scenario (right side of Figure 7). Their original lack of sub-
jective similarity gives way to people seeing similarities such as single agents try-
ing to cover too many resources (if only the closest agent moves), all agents
becoming too similar (if all agents move equally quickly), and spontaneous differ-
entiation of agents so that each covers one patch (if the competitive specialization
principle is followed). As another example of spontaneous transfer based on com-
plex systems principles, we have found that foraging for spatially located re-
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FIGURE 7 Another example of transfer between complex systems simulations (adapted
from Goldstone & Sakamoto, 2003; Goldstone & Son, 2005). In this example, ants foraging for
food resources are analogous to neural detectors (bottom row on right) adapting toward input
patterns (top row on right). The complex systems principle instantiated by both simulations is
that an effective way of having agents cover a set of resources is to have the closest agent move
toward a randomly selected resource quickly while all other agents move toward the resource
more slowly.
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sources in a virtual world can be unified with searching for solutions to anagram
problems through the principle of exploration/exploitation trade-offs (Hills, Todd,
& Goldstone, 2008). Participants who are encouraged to explore their foraging en-
vironments tend to spontaneously sample anagrams widely, and participants who
are encouraged to exploit already found foraging patches tend subsequently to per-
severe on anagram problems. Similarly, Jacobson (2001) found transfer of broad
complex systems concepts such as emergence and multiple scales of analysis to
new problems. In honesty, failures to transfer principles such as these are as com-
mon as successes. Generalizing over many cases of each, our best hypothesis is
that successful transfer is found when the principle to be transferred is conveyed in
a visuospatial and dynamic manner and triggers core elements of a cognitive
model. Some of these core elements include forces, local interactions, attraction
and repulsion, movement, and state changes.


When both an interpretation and a relevant physical situation are simulta-
neously present, then there is an opportunity for the distant transfer of principles.
Grounded situations with spatial and temporal dynamics serve as strong cues for
reminding. The capacity of the interpretation to shift a learner’s perspective allows
only some of the physical properties to be functionally important for the remind-
ing. A pedagogical implication is that case studies and interpretations should be
intermingled rather than separated. Education researchers have long debated
whether rules should be given before or after case studies. On the one hand, the
vast majority of textbooks proceed from rules to examples (Bagchi & Wells, 1998;
Nathan et al., 2002). The argument is frequently made that examples prior to defi-
nitions or rules are ineffective because it is not clear how the example is an exam-
ple of the rule until the rule is given. This is a classic deductive argument, going
from general claims to specific instantiations. On the other hand, other researchers
have noted that there is a striking dissociation between teaching methods and
learning preferences. Felder and Silverman (1988) noted that almost all engineer-
ing professors claim to use deductive instruction methods when teaching others,
even though they themselves use inductive learning methods as much as deductive
ones. Inductive methods proceed from particulars to generalities and are often use-
ful when the generalization is difficult to comprehend. In contrast to most text-
books, some researchers have advised that “as a rule, one should start with the pre-
sentation of one or more modeling examples and then explicitly present the
problem-solving phases and rules of thumb that are illustrated by those examples”
(van Merriënboer, Clark, & de Croock, 2002, p. 50).


In contrast to either a “rules first” or an “examples first” strategy, our simula-
tions use either concurrent or alternating presentations of rules and case studies.
The argument that rules should be given before examples because otherwise exam-
ples are not clear neglects the fact that rules are often equally hard to fathom de-
spite their apparent precision. In our simulations, we have often found that exam-
ples clarify rules as much as vice versa. For example, one student exploring
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Dropping Balls observed, “I read the rule that balls would move with randomness,
but I didn’t really understand what this meant until I saw them jiggling around.” By
presenting case studies and rules simultaneously, one grounds the rules and makes
the case study meaningful. The power of mutually supportive rules and examples
is most apparent when our students are interacting with simulations and interpret-
ing those elements. When a student looks at the stable but stuck configuration in
Figure 6 and realizes, “These balls can’t break out of their pattern unless random-
ness is added,” the student has learned something about both the principle of simu-
lated annealing and the Path Finder simulation. The specific case study helps the
students to decipher the meaning of the simulation rules, remember and spontane-
ously use the rules, and, most important, understand why the rules have been so de-
vised.5 In turn, the rules enable the students to understand the otherwise baffling
motion of the balls. In a nutshell, when the simulations are effective, students are
not just seeing events, they are seeing events as instantiating principles. This act of
interpretation, an act of “seeing something as X” rather than simply seeing it
(Wittgenstein, 1953), is the key to cultivating transportable knowledge.


Generalization Through the Constructive Modeling
of Grounded Situations


ABM is a powerful technology for analyzing and depicting complex systems.
ABMs are increasingly used to bring complex systems perspectives to a wide vari-
ety of fields including the natural sciences, social sciences, and engineering (e.g.,
Amaral & Ottino, 2004; Epstein & Axtell, 1996; Langton & Burkhardt, 1997;
Ottino, 2004). Several efforts are ongoing to bring agent-based methods to edu-
cational contexts (e.g., Abrahamson & Wilensky, 2004; Ionnidou, Repenning,
Lewis, Cherry, & Radner, 2003; Klopfer, 2003; Wilensky, 2003). Wilensky has fo-
cused his development effort on integrated environments that are both “low thresh-
old” (novices can start right in on exploring and constructing models) and “high
ceiling” (scientists are able to construct useful and accurate models for their re-
search; Tisue & Wilensky, 2004). Using the multi-agent environment NetLogo6


(Wilensky, 1999b), Wilensky and colleagues have worked with students at a vari-
ety of educational levels to explore, modify, and construct ABMs of complex sys-
tems situations (Abrahamson, Janusz, & Wilensky, 2006; Blikstein & Wilensky,
2004a; Centola et al., 2000; Levy & Wilensky, 2006; Sengupta & Wilensky, 2005a,
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5Wilensky (1993) found that when competent students followed mathematical rules without under-
standing the rationale for those rules or the space of possible rules from which these rules were drawn,
they experienced “epistemological anxiety” stemming from their uncertainty about the epistemological
status of the rules—for example, are the rules arbitrarily or conventionally selected, or are they neces-
sary truths?


6And earlier versions of it, such as StarLogoT (Wilensky, 1997c). In these languages, agents are re-
ferred to as “turtles.”
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2005b; Stieff & Wilensky, 2003; Wilensky, 1999a). In one such project (Wilensky
et al., 2000), they devised a secondary curriculum that explicitly asks students to
practice seeing a diverse range of phenomena as “emergent.” Students switch be-
tween an agent-level view and a bird’s-eye view of different phenomena such as
population ecologies (Wilensky et al., 2000), traffic patterns (Wilensky & Stroup,
1999), and probability distributions (Abrahamson & Wilensky, 2004). In an
eighth-grade implementation of this curriculum, students learned to spontaneously
switch perceptual focus in a variety of cases in which both an agent-level and an
aggregate-level perspective were possible. In a science classroom, students were
asked to give simple rules to agents and then describe the result “in terms of the
agent’s point of view and also in terms of the overall pattern.” The default initial-
ization of the agents had all of the agents at a single location but with different
headings. A typical simple rule the students tried was to tell the agents to move for-
ward 10 units. Initially, the students’ two descriptions were very similar: The agent
view was described as “the turtle moved 10 units,” and the overall pattern was de-
scribed as “all the turtles moved 10 units.” After being challenged to describe the
overall pattern, the students came to describe the overall pattern as “a circle of ra-
dius 10.” This very simple example of an “emergent entity” served as a touchstone
case. After many such (what the teacher called) “emergent exercises,” students
came to see the overall pattern resulting from their increasingly complex rules not
as a pattern of many individuals, but instead as a description of a new emergent en-
tity, a “population” or “aggregation” of agents. Being able to shift between these
two levels of description enabled them to understand a basic complex systems
principle: that properties of the individual elements of a system are not necessarily
properties of the aggregate system as a whole and vice versa. A rudimentary exam-
ple of students coming to understand this principle is seen through the students
giving the agents a rule to move around the perimeter of the circle. Even though,
from the agent’s point of view, it is moving, the aggregate entity of which it is a
part, the circle, stays still.


Later in the year, the class was reading an article titled “The Graying of Amer-
ica,” describing how the U.S. population was aging. In discussing this article, the
students discussed the baby boom and how the aging of that large cohort was a ma-
jor factor in explaining the graying. In the class discussion, students thought about
what would happen when that cohort passed on. One student said that there would
be a “younging of America.” The discussion proceeded to this question: “How
could America be getting younger when each individual is getting older?” The stu-
dents were not troubled by this apparent paradox; they explained it by referring to
cases such as the agents circling where the agents’ movements were strikingly dif-
ferent than the motion of the aggregate (Wilensky et al., 2000).


In the approach embodied in this curriculum, students are not presented with a
simulation, but rather the pedagogical strategy is to present a theme that allows stu-
dents to select their own situation. Students typically begin by selecting an existing
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simulation to explore, proceed to modify the simulation, then progress to creating
a simple simulation. Creating a simulation or model of a situation forces the cre-
ator to ground his or her interpretation of the elements. Creating a simulation is a
powerful strategy for extracting a general principle from the situation (see Papert,
1980). In order for the simulation to work, the student must model the mechanisms
through which systems elements interact. When they encounter a new situation
with similar system element interactions, students are primed to see those mecha-
nisms at work. They can thus come to see patterns of mechanisms as in our Patterns
1 and 2.


By carefully selecting the themes and starting cases, students can be led to dis-
cover proto-versions of general complex systems principles. In the class described
above, one theme was for students to create models of population-level change by
devising rules of birth and death for agents and observing the resulting population
levels. Typically, students started with a population of agents (each with a ran-
domly selected color) and gave them simple birth and death rules. In one class dis-
cussion, students noticed that even though their birth and death rules did not favor
one color over another, after some time, the population would end up being com-
posed entirely of agents of the same color. Students came to understand that if one
color, by chance, came to have larger numbers, then it would tend to increase its
advantage. Through this case they came to an understanding of a proto-version of
the principle of positive feedback (Wilensky, 2001b).7 Papert (2000) described stu-
dents trying to program a virtual creature to reach a designated target. When they
tried to guide the creature directly to the target, it would get stuck if there was an in-
tervening obstacle. However, they discovered that if they added a little random
“wiggle” to the creature’s movement toward the target, it would get unstuck and
reach the target. In this way they discovered a proto-version version of the princi-
ple of simulated annealing.


THE COGNITIVE SCIENCE OF TRANSFERRING
COMPLEX SYSTEMS PRINCIPLES


Thus far, we have presented an initial case for students learning complex systems
principles by interacting with or constructing a simulation that embodies a general
principle. Crucially, the aim is for students to actively interpret the elements of the
simulation according to theoretical elements underlying the principle to be taught.
Students learn how to see events as manifesting principles, and this learning pre-
pares them for seeing future events in terms of the same principles (Bransford &
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7And also the principle of genetic drift, under which a trait can spread through a population even
though it has no selective advantage.
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Schwartz, 1999). It is difficult for anybody to spontaneously see events as mani-
festing mathematical formalisms, which is why transfer based upon shared formal-
ism alone is so rare. It is far more plausible for transfer to proceed by someone ap-
plying previously learned methods of interpreting events. For example, practice
interpreting the balls in Figure 4 as being stuck without randomness facilitates in-
terpreting the paths in Figure 6 similarly (Goldstone & Sakamoto, 2003). In this
section, we provide additional empirical support for transfer based on interpreting
grounded situations and flesh out aspects of the proposal.


The Flexible Perception of Similarity


“You see,” Mrs. Whatsit said, “if a very small insect were to move from the section of
skirt in Mrs. Who’s right hand to that in her left, it would be quite a long walk for him
if he had to walk straight across.” Swiftly Mrs. Who brought her hands, still holding
the skirt, together. “Now, you see,” Mrs. Whatsit said, “he would be there, without
that long trip. That is how we travel.” (L’Engle, 1962)


An important plank of our proposal is that the similarity between situations
governed by the same complex systems principle can be used to promote transfer
even if the situations are dissimilar to the untutored eye, and even if the similarity is
not explicitly noticed. This claim apparently contradicts the empirical evidence for
very limited transfer between remote situations (Detterman, 1993; Reed, Ernst, &
Banerji, 1974; but see also Barnett & Ceci, 2002, for a balanced evaluation of the
evidence). In fact, our claim is that the perceived similarity of situations is mallea-
ble, not fixed by objective properties of the situations themselves. It may well be
that remotely related situations rarely facilitate one another. However, well-de-
signed activities can alter the perceived similarity of situations, and what were
once dissimilar situations can become similar to one another with learning. Much
of the apparent inconsistency in the empirical evidence for and against remote
transfer is eliminated if one considers whether the learner possesses an under-
standing that can relate originally unrelated situations (A. L. Brown, 1989). For ex-
ample, students can transfer the survival strategy of mimicry from one animal to
another if they are taught the causal principles underlying the defense mechanism
(A. L. Brown & Kane, 1988). Our hope, then, is not to have students transfer by
connecting remotely related situations, but rather to have students warp their psy-
chological spaces so that formerly remote situations are similar.


There is strong evidence that this kind of warping spontaneously occurs. Ob-
jects that share membership in important categories become increasingly similar.
In one study, Goldstone (1994) first trained participants on one of several categori-
zation conditions in which one physical dimension was relevant and another was
irrelevant. Participants were then transferred to same/different judgments (“Are
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these two squares physically identical or not?”). Ability to discriminate between
squares in the same/different judgment task, measured by signal detection theory’s
d´), was greater when the squares varied along dimensions that were relevant dur-
ing categorization training. The warping of similarities according to experience
has been found in other laboratory experiments as well (Goldstone, Lippa, &
Shiffrin, 2001; Livingston, Andrews, & Harnad, 1998; Özgen, 2004). It has also
been found in cross-cultural studies on color perception (Roberson, Davies, &
Davidoff, 2000), where color discriminations are affected by the color categories
of one’s native language. The weight of this evidence indicates that even percep-
tual similarities are affected by categories learned over one’s lifetime as well as
those learned in restricted laboratory contexts.


One might argue that these studies show relatively modest changes in similari-
ties, but not the kind of shift that would make the ozone layer perceptually similar
to organ pipes (see Table 1). However, research also indicates more radical shifts in
similarities with experience. Whorf (1941/1956) argued for similarities that de-
pend on cultural context. For Shawnee Native Americans, the sentences “I pull the
branch aside” and “I have an extra toe on my foot” reflect similar situations.
Roughly speaking, the first sentence would be represented as “I pull it (something
like the branch of a tree) more open or apart where it forks,” and the second sen-
tence would be represented as “I have an extra toe forking out like a branch from a
normal toe.” Controlled laboratory studies have similarly shown that language has
a large impact on conceptualization of time (Boroditsky, 2001) and that learning
relational language can lead children to see abstract commonalities between situa-
tions that they would have otherwise missed (Gentner, 2003). Computer model-
ing languages for describing ABMs are literally languages and accordingly offer
new cognitive tools for describing the phenomena of one’s world. With respect to
educational situations per se, case-based reasoning researchers have stressed the
feasibility and importance of flexibly assessing the similarity between scenarios
(Kolodner, 1997). Researchers have found that experts shift their basis for judging
the similarity of problems from superficial to structural aspects (Chi, Feltovich, &
Glaser, 1981; Schoenfeld & Herrmann, 1982) and that this influences their sponta-
neous remindings (Novick, 1988).


A sense of similarity, it seems, is highly educable. However, the real power of
adaptive similarity is that it can be implicitly trained and automatically deployed
(Landy & Goldstone, 2007). People seem predisposed to interpret ambiguous situ-
ations in a way that makes them similar to previously presented situations. For ex-
ample, in the situation depicted in Figure 8, participants are asked to assess the
similarity of either the pairs A and B or B and C (Medin, Goldstone, & Gentner,
1993). The center objects B are ambiguous and have mutually exclusive interpreta-
tions that are consistent with A or C. When participants are asked to describe how
the objects A and B in the top row are similar, they frequently respond with some
variant of “They both have three prongs.” However, when presented with B and C,
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participants tend to respond with “They both have four prongs.” Clearly, partici-
pants’ representation of B is not fixed but rather is constructed as B is compared to
A and C (see also Hofstadter, 1997). Objects are often interpreted in a manner con-
sistent with previously presented objects (Bugelski & Alampay, 1961; Leeper,
1935), even when people are unaware of this influence.


With respect to teaching complex systems, the implication is that giving people
experience with one system embodying a principle can prime their ability to see
another system as embodying the same principle. This should be particularly true
if the priming is visual, rather than strictly intellectual. Priming is particularly po-
tent if perceptual routines are configured that can apply in new situations (Kolers
& Roediger, 1984). One reason why skeptics doubt remote transfer is because of a
focus on analytic and explicit transfer. It may be difficult to get people to analyti-
cally bring to mind previously learned schemas (Gick & Holyoak, 1983). Instead,
we propose to teach people ways of looking at situations that become natural per-
ceptual habits. When we say looking, we mean perception, but we also mean using
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FIGURE 8 Examples of stimuli from Medin et al. (1993). Participants were asked to describe
features that were shared and different between pairs of objects. The middle objects labeled B
are ambiguous and tend to be interpreted in a manner that is consistent with the objects (A or C)
with which they are paired. When determining both common and distinctive features, people
apparently first interpret objects so as to make them more comparable.
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representations to encode situations—just as telescopes and microscopes extend
perception, so cognitive technologies can extend perception by giving people rep-
resentations that extend their abilities to encode situations. diSessa and Sherin
(1998) also emphasized the importance of perceptual shifts for achieving concep-
tual change and argued that these shifts may be both perceptual and interpreta-
tional: “In many instances this seeing is a substantial accomplishment of learning
and will depend only very partially on basic perceptual capabilities” (p. 1172). In
this extended sense of perceptual learning, acquiring diagramming techniques
such as Euler Circles for logic, Cayley diagrams for group theory, and Feynman di-
agrams for quantum field theory are all methods for changing perception so that it
becomes sensitive to otherwise obscure and esoteric properties of a situation. The
impact of diagramming techniques like these also refutes the notion that percep-
tion is merely a passive pick-up of information present in a scenario. Diagrams,
computational modeling, and the transformation of physical symbols are all active
ways of actively constructing representations that change how the world appears.


Idealized but Grounded Models


Although we have been advocating grounded knowledge for scientists and stu-
dents alike, we need to clarify what is and is not entailed by grounding. In particu-
lar, grounding is compatible with idealization. In fact, we consider here evidence
hat models ought to be at least partially idealized if the goal is to promote trans -
portable understandings.


By grounded knowledge, we mean knowledge that is conveyed by perceptual
simulations. The simulations are perceptual in that they incorporate spatial and
temporal information and do so by using brain regions that are dedicated to percep-
tual processing. Arnheim (1970), Barsalou (1999; Goldstone & Barsalou, 1998),
and others have argued that individuals’concepts are not amodal and abstract sym-
bolic representations but rather are grounded in the external world via their percep-
tual systems. According to Barsalou’s perceptual symbols theory, conceptual
knowledge involves activating brain areas dedicated for perceptual processing.
When a concept is brought to mind, sensorimotor areas are reactivated to imple-
ment perceptual symbols. Even apparently abstract concepts, such as truth and ne-
gation, are grounded in complex perceptual simulations of combined physical and
introspective events. Several lines of empirical evidence are consistent with a per-
ceptually grounded conceptual system. Detailed perceptual information is repre-
sented in concepts, and this information is used when reasoning about those con-
cepts (Barsalou, Simmons, Barbey, & Wilson, 2003). Concepts that are similar to
one another give rise to similar patterns of brain activity, and a considerable
amount of this activity is found in regions associated with perceptual processing
(Simmons & Barsalou, 2003).
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The essence of a grounded representation is that dimensions in the model natu-
rally correspond to dimensions of the modeled world. However, this does not re-
quire that the modeling world superficially resemble the modeled world or pre-
serve all of the raw, detailed information of that world (Barsalou, 1999; Shepard,
1984). Researchers have found that idealized graphics can lead to better mathe-
matical understanding than richer animations (Scheiter, Gerjets, & Catrambone,
2006). Mathematical systems are more readily transferred when they are conveyed
with generic symbolic forms rather than more concrete graphical representations,
even when the latter have features that intrinsically conform to the underlying for-
malism (Kaminski, Sloutsky, & Heckler, 2008). Similarly, our experience with stu-
dents’understanding of complex systems computer simulations indicates that sim-
ulations lead to the best transfer when they are relatively idealized. Goldstone and
Sakamoto (2003) gave students experience with two simulations exemplifying the
principle of competitive specialization. The first simulation involved ants foraging
for food, whereas the second involved categories adapting to pictures. The first
simulation, that of foraging ants, was presented using either line drawings of ants
and food or simplified geometric forms. Overall, students showed greater transfer
to the second scenario when the elements were graphically idealized rather than re-
alistic (see also Smith, 2003, and Son, Smith, & Goldstone, in press, for consistent
results with rich vs. simple geometric objects). It is interesting that the benefit of
idealized graphical elements was largest for students who had relatively poor un-
derstanding of the initial simulation. It might be thought that strong contextu-
alization and realism would be of benefit to those students with weak comprehen-
sion of the abstract principle. Instead, it seems that poor comprehenders are
particularly at risk for interpreting situations at a superficial level, and using realis-
tic elements encourages this tendency.


Other researchers have found that idealization is often effective for promoting
symbolic understanding. In a standard paradigm employed by Judy DeLoache
(1991, 1995; DeLoache & Burns, 1994; DeLoache & Marzolf, 1992), a child
around the age of 2.5 years is shown a model of a room, the child watches as a min-
iature toy is hidden behind or under a miniature item of furniture in the model, and
the child is told that a larger version of the toy is hidden at the corresponding piece
of furniture in the room. Children were better able to use the model to find the toy
in the actual room when the model was a two-dimensional picture rather than a
three-dimensional scale model (DeLoache, 1991; DeLoache & Marzolf, 1992).
Decreasing children’s access to a model of a room by placing it behind a win-
dow allowed children to more effectively use it as a model (DeLoache, 2000).
DeLoache and her colleagues (DeLoache, 1995; Uttal, Liu, & DeLoache, 1999;
Uttal, Scudder, & DeLoache, 1997) explained these results in terms of the diffi-
culty in understanding an object as both a concrete, physical thing and as a symbol
standing for something else. Word problems in mathematics presents another ex-
ample in which the ability of an object to serve as a symbol decreases as its physi-
cal properties become more salient (Bassok & Holyoak, 1989).
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A natural question to ask is “How can we tell whether a particular perceptual
detail will be beneficial because it provides grounding or detrimental because it
distracts students from appreciating the underlying principle?” This question is not
unique to complex systems principles but is crucial for the perceptually grounded
ABM approaches to complex systems that we have been advocating. The answer
depends on the nature of both complex systems principles and mental simulations.
Complex systems models are typically characterized by simple, similarly config-
ured elements that each follow the same rules of interaction. For this reason, idio-
syncratic element details can often be eliminated, and information about any ele-
ment only need be included to the extent that it affects its interactions with other
elements. Mental simulations are efficient at representing spatial and temporal in-
formation but are highly capacity limited (Hegarty, 1992, 2004b). Under the as-
sumption that a student’s mental model will be shaped by the computational model
that informs it, we suggest the following prescriptions for building computer simu-
lations of complex systems: (a) Eliminate irrelevant variation in elements’ appear-
ances, (b) incorporate spatial–temporal properties, (c) do not incorporate realism
just because it is technologically possible, (d) strive to make the element interac-
tions visually salient, and (e) be sensitive to peoples’ capacity limits in tracking
several rich, multifaceted objects.8 Another empirically supported suggestion for
compromising between grounded and idealized presentations is to begin with rela-
tively rich, detailed representations and gradually idealize them over time (Gold-
stone & Son, 2005; see also Medin & Ross, 1989, for their discussion of “Conser-
vative Generalization”). This regime of “concreteness fading” was proposed as a
promising pedagogical method because it allows simulation elements to be both
intuitively connected to their intended interpretations but also eventually freed
from their initial contexts in a manner that promotes transfer.


The above prescriptions for the design of simulations imply corresponding pre-
scriptions for the design of computer modeling environments. To facilitate the con-
struction of simulations compatible with students’ mental models, such environ-
ments must provide interface elements and language constructs that facilitate the
construction of simulations that satisfy these criteria. Tisue and Wilensky (2004)
described how these design principles continue to guide the development of
NetLogo.


Developmental Considerations for Teaching and Learning
About Complex Systems


For there to be positive change in science classrooms, arguments for the utility of
complex systems concepts must mesh with what is known about children’s capaci-
ties for understanding these concepts. If the necessary concepts are fundamentally
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too advanced for children to acquire, then even if the concepts are fertile and offer
the promise of generalizeable knowledge, it may be irresponsible to organize a sci-
entific curriculum around them. Some research suggests that there are reasons to
believe that caution is necessary. Penner (2000) found that middle-schoolers have
difficulties connecting changes at the micro-level to patterns at the global level, un-
derstanding that a system may not be governed by a single causal force, and appre-
ciating that even a small micro-level change can have a large macro-level impact.
In a partially overlapping description, Chi (2000; Chi, Slotta, & De Leeuw, 1994)
has identified difficulties that novices have with understanding nonlinear influ-
ences of causal events, considering critical interactions between agents at the mi-
cro-level, and grasping emergent processes as the result of interactions between a
collective and an environment. Children frequently harbor misconceptions, classi-
fying heat or electricity as material substances rather than emergent processes, for
example (Chi, 2005). Consistent with this tendency for children to see their world
in terms of substances rather than processes, Hmelo-Silver and Pfeffer (2004)
found that children (and novice adults) explaining the operation of aquarium eco-
systems focused on structures and provided few functional or behavioral descrip-
tions, whereas experts were more likely to employ all three components in their
explanations.


The account of children’s difficulties as based on the dichotomy between sub-
stance- and process-based classifications remains controversial. Considering Chi’s
domain of electricity, Sengupta and Wilensky (2006, in press) have argued that
misconceptions about electricity result when otherwise productive knowledge ele-
ments are activated because of predominantly macro-level contextual cues. They
argued that the same knowledge structures that Chi and her colleagues have identi-
fied as “materialistic” or “object-based” (Chi et al., 1994) can be bootstrapped to
engender a correct understanding when the same phenomenon (e.g., electric cur-
rent in a circuit) is computationally represented in an emergent fashion in terms of
the atoms, ions, and electrons in the various circuit elements and their interactions.
In other words, the same object-based knowledge elements, when activated be-
cause of both aggregate-level and micro-level contextual cues embodied in the
NetLogo-based emergent representations of electric current in a circuit, can gener-
ate a productive sense-of-mechanism of the represented phenomena in the learn-
ers’ minds (Sengupta & Wilensky, in press). All of these studies, however, were
conducted with complex phenomena that were not very familiar to the children.
Levy and Wilensky (2008) studied children’s reasoning about more familiar emer-
gent phenomena such as social emergent systems. Sixth-grade students were inter-
viewed regarding social emergent systems that they experience in everyday life,
such as moving at the start of a physical education class in order to do their exer-
cises. Levy and Wilensky found that the interviewees were able to effectively rea-
son about such systems. The students did so by resegmenting the system to include
a midlevel grouping to support a mental simulation at two description levels. In
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short, there is evidence that children, and perhaps everybody (Resnick, 1994;
Resnick & Wilensky, 1993; Wilensky & Resnick, 1999), have biases against the
correct interpretation of many complex systems and also that these biases can be
overcome in familiar or well-designed contexts.


What are the implications for instructional design given the developmental discus-
sion above? These cognitive challenges can be addressed by appropriate pedagogical
designs and learning environments. Several suggestions exist for doing precisely this.
First, Papert (1991) found that children are particularly prone to building new knowl-
edge when they are actively engaged in constructing external artifacts upon which they
can reflect. Second, these artifacts can be virtual rather than corporeal. Students build-
ing NetLogo models develop special awareness of the constituent objects and their in-
teractions that embody processes that give rise to eventual constructions (Wilensky,
2001a; Wilensky & Reisman, 2006). A computer program is nothing more than a
process for creating patterns, and learning complex systems through programming is
a promising way to have students develop process-based perspectives.


Third, pertaining to their view of children’s ontological misclassifications of
phenomena as responsible for the children’s difficulty understanding complex sys-
tems, Slotta and Chi (2006) developed “ontology training” materials explicitly de-
signed to prevent misclassifications and buttress the category of emergent pro-
cesses. This training has succeeded in preventing students’ misconceptions (e.g.,
claims that “bulbs closer to the battery come on before bulbs farther away, and burn
brighter,” which suggests that electricity is a substance) and in facilitating correct
systems-level understandings.


Fourth, well-designed technology can help students make the crucial bridge be-
tween agent-based and aggregate forms of reasoning. Children may often lack
practice in the metacognitive facility to strategically shift between seeing the trees
and the forest. In these cases, simulations and experiences can be crafted to facili-
tate the switch. For example, NetLogo-based curricula (e.g., Blikstein & Wilensky,
2004b; Sengupta & Wilensky, 2005a, 2005b) are designed to facilitate the switch
through bootstrapping students’ object-based knowledge at multiple levels—
agent, aggregate, and midlevel. Furthermore, participatory simulations can be de-
signed in which each student in a classroom plays the role of an agent within the
system (Colella, 2000; Goldstone, Roberts, & Gureckis, 2008; Wilensky & Stroup,
1999). Given that the student viscerally appreciates his or her own agent’s perspec-
tive, if the classroom’s overall behavioral pattern is sufficiently salient, the student
can relatively easily shift his or her attention between levels. Other design solu-
tions for facilitating cross-level attention include (a) highlighting the activity of
one agent by giving it a distinctive mark or tracking it, (b) allowing user-controlled
speed control so that students can slow down a simulation to see individual interac-
tions and then speed it up to see the global pattern, and (c) providing students with
a method for dynamically controlling their level of spatial resolution by zooming
in and out of the world.
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In sum, there is evidence both that complex systems can be difficult for children
to understand, but also that interventions, technology, and appropriate learning en-
vironments have proven effective in meeting the challenges inherent in these top-
ics. These topics are too important to wait for adulthood. In the American Associa-
tion for the Advancement of Science’s (1993) benchmarks for scientific literacy,
four themes were seen as running through all of science: (a) models, (b) scale, (c)
constancy and change, and (d) systems. A complex systems perspective is pivotal
to each of these themes.


COMPARISON TO EXISTING APPROACHES
TO TRANSFER


An appreciation of the power of complex systems principles, and how they are ef-
fectively taught, adds a useful perspective to the large and growing literature on
transfer (reviewed by National Research Council, 1999). Transfer is a multifaceted
topic that has been tackled from many perspectives (Carraher & Schliemann,
2002). What is meant by transfer, and whether transfer is found, is defined by task,
content, and context. Complex systems are a natural domain for exploring transfer
because superficially dissimilar systems are inherently connected to one another
by these principles. The most meaningful evidence that learners have appreciated
these connections is that they can better understand one system after having expe-
rienced another system governed by the same principle.


The Role of Formalisms in Transfer


In an earlier section we distinguished the approach we advocated (i.e., of getting
students to interpret grounded situations) from a formalism-first approach in
which transfer occurs primarily by learning formalisms that connect superficially
unrelated situations. Learners are most likely to transfer what they have learned
when they have developed a causal mental model (Gentner & Schumacher, 1986).
The problem with formalisms is that, even when they have been acquired, it is dif-
ficult to recognize when the formalism is applicable to a situation, and so sponta-
neous transfer is unlikely.


Naturally, pedagogy matters, and it is possible to tie formalisms to situations
during teaching. In fact, we see ABMs as playing exactly such a linking function
by being physically instantiated on the one hand, but also amenable to formal anal-
ysis on the other hand. Another reason why ABMs are well poised for connecting
formalisms to the world is that they provide a motivation for developing a formal-
ism in the first place. In the same way that exploring a dynamic geometry environ-
ment (Goldenberg & Cuoco, 1998) can motivate students to develop a formal
proof for events that they observe (“Hmm, when I draw the angle bisectors for each
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of the angles of this triangle, they meet at a single point. Hey, they always do no
matter how I change the triangle! Why is this so?”), exploring ABMs gives stu-
dents a wealth of observations that are candidates for formalisms or at least formal
thought. As students observe a chemical diffusing in a space, they may observe
that, macroscopically speaking, the chemical always spreads from regions of
higher concentration to lower concentration even though, microscopically, each
molecule of the chemical is moving randomly. Observing this apparent cross-level
discrepancy between high-level regularity and low-level randomness can usefully
problematize the situation for students in a way that can lead them to make sense of
or develop formalisms for Brownian motion and perhaps even Einstein’s general
expression for diffusion. Moreover, even if students never achieve these for-
malisms, by thinking carefully about the ABM they can still make substantial
progress in predicting distributions over time of different chemicals in different
spaces.


If ABMs play a valuable role in attaching formalisms to situations, one peda-
gogically useful enterprise would be to develop a table of ABM principles and
their associated formalisms and to teach students these connections. As an exam-
ple, consider random walk processes that are implicated in the Brownian motion of
molecules, the search paths of foraging animals, fluctuating stock prices, and the
dynamics of human decision making. In the one-dimensional version of all of
these situations, the expected distance of a randomly moving agent from its start-


ing point after N unit-length steps is
2N


π
. The connection between this equation


and the actual random walk process is clarified substantially by creating a simple
simulation of an agent making random left–right movements iteratively.9 It be-
comes clear that the agent’s distance from the starting point increases with the
number of steps it has taken, but it increases less quickly than linearly because
many movements will cancel one another out. The ABM is useful for justifying
and grounding some of the aspects of the equation, and the equation itself is useful
for connecting random walk processes to the central limit theorem, pi, and other
mathematical relations.


Although we are not sanguine about the prospects of formalism-first ap-
proaches to transfer, we also do not advocate a “formalism-never” approach. Once
a grounded mental model has been built for a complex system, it can provide a
scaffold for constructing mathematical and logical formalisms. The advantage of
eventually generating formalisms is that, like simulations, they provide new ways
of interpreting complex situations. Perhaps even more so than simulations, mathe-
matical formalisms (either in the traditional form of equations or in the newer form
of computational rule sets) are able to connect superficially dissimilar situations.
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For example, once one has learned a reaction–diffusion equation, relevant situa-
tions are likely to be naturally decomposed into activators and inhibitors. The for-
mal distinction between these elements helps propel the conceptual distinction.
The very fact that equations and their elements are labeled provides useful tags for
accessing them. Simply knowing that a formalism is called the Lotka–Volterra
equation is not likely to help somebody identify instances of it. However, if one un-
derstands the critical elements of the equation (e.g., the birth rate of prey, the effi-
ciency with which prey are turned into predators, and the death rate of predators),
then one will tend to see future situations in terms of these elements. If one of these
variables is hidden within a system, knowledge of the equation can give one the
impetus to uncover it. In addition, when one hears that Lotka–Volterra equations
are relevant to a situation, a constellation of expectations and causal models are
brought to mind. Formalisms provide important “handles” for rich relational struc-
tures. Like the handle of a mug, when the formalism is manipulated, the structure
that it is connected to is also apprehended, and it has the potential advantage of be-
ing easier to grasp.


The above discussion groups formalisms together as if they were all equiva-
lent. However, not all formalisms are created equal—formalisms differ in the de-
gree to which they admit grounding and more naturally fit with perceptual and
motor schemes. Wilensky and Papert (Wilensky, 2006) have presented a frame-
work for assessing representations as they relate to content. They use the word
structuration to describe the encoding of some domain of content using a partic-
ular representational infrastructure. A restructuration, then, is a reencoding of
the content using an alternative representation. Using this framework, we can ex-
amine properties of structurations, including their ability to transfer, and com-
pare them across dimensions. Wilensky and Papert have argued that agent-based
formalisms are a more natural fit with perceptual and motor schemes that aggre-
gate equations as they describe properties of individuals. Agent actions such as
move forward, turn, eat can easily be understood in terms of human actions. This
is similar for agent perceptions. Furthermore, because agent-based representa-
tions are so easy to modify in an environment like NetLogo, “what if” experi-
ments can easily be conducted and the modified representations immediately
linked to visualized behavior.


Grounded but Transportable Knowledge


Several other researchers have proposed ideas similar to our notion of transfer of
interpretations of grounded situations. Our notion blends the concreteness of ac-
tual situations, as filtered through mental and computer models, with the perspec-
tive-dependence and idealization of interpretations. Other researchers have de-
scribed the concept of situated abstraction (Hoyles & Noss, 1992, 1994; Noss &
Hoyles, 1996) or situated generalization (Carraher, Nemirovsky, & Schliemann,
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1995) to highlight the interpenetration and inseparability of concrete (specific and
contextual) and abstract (general) learning. Wilensky (1991) described the process
of concretion (as opposed to abstraction) to highlight the groundedness of non-
superficial understanding. Hoyles and Noss discussed situated abstractions as
emerging from a wealth of previous learning experiences. This work, like our own,
provides an account of how early experience can inform later experience without
abandoning concrete spatial–temporal aspects of the original experience. Noss and
Hoyles noted that new technologies, often computational, offer effective alterna-
tives to the use of abstractions. They noted, “This we suggest is not an accident: the
constraints and boundedness of static media are often invisible due to their ubiq-
uity so that their role in ‘non-transfer’ is not recognized” (Hoyles & Noss, 2004,
p. 382). The science of complex systems, deeply embedded as it is in computa-
tional media, is thus a natural candidate for offering improvements to the frequent
lack of transfer afforded by static media.


Our empirical research has led us to propose computer simulations that are per-
ceptually grounded yet also idealized in many respects. This proposal runs counter
to much of the work in virtual reality that has as an explicit goal the realistic mim-
icking of real-world phenomena (Grady, 1998; Heim, 2000). To be fair, there is
definite virtue to virtual reality, particularly when the performance one wishes to
learn is specific to a particular situation, such as driving a race car or flying a
Cessna Skyhawk. However, if one is a science or mathematics teacher predomi-
nantly interested in having students apply their learned knowledge and skills to
new and markedly different situations than those initially trained, then there is evi-
dent power to visualizations that abstract from, or distort, reality (Hegarty, 2004a;
Schwan & Riempp, 2004). Similar to our findings with poor comprehenders being
distracted and overly constrained by realistic details, Lowe (2003, 2004) found
that novices are often distracted by perceptually salient aspects of a realistic and
dynamic display rather than deeper, and more important, relational aspects. Lowe
(2004) concluded that learners will often require specific guidance regarding
search strategies so that they will not be distracted by salient visual elements. This
is consistent with our efforts to provide learners with not just interactive simula-
tions but also the apparatus needed to guide their interpretations of these simula-
tions. When combined with rules that guide interpretation, idealized computer
simulations can be appropriated into productive and generative mental models
(Rieber, 1992). Rieber, Tzeng, and Tribble (2004) found that learning with graphi-
cal simulations was more successful when it was supplemented with written and
graphical explanations. It is possible to have knowledge that is both grounded and
airborne. A contribution of a complex systems perspective beyond this previous
work has been to provide guidelines on which aspects of a real-world system
should be perceptually instantiated and that should be idealized.


Our emphasis on educating students to interpret concrete situations according
to models straddles a commonly made division between low-road and high-road
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transfer (Salomon & Perkins, 1989). Low-road transfer results from extensive,
varied practice and the automatic triggering of routinized, stimulus-controlled be-
havior in new situations. High-road transfer involves the deliberate generalization
of principles that apply across contexts and is exemplified by the explicit applica-
tion of previously learned mathematical formalisms. The perceptually mediated
nature of our transfer is consistent with the nonstrategic nature of low-road transfer
as well as with Bransford and Schwartz’s (1999) observation that using old materi-
als to facilitate learning of new material frequently occurs in the absence of con-
scious remindings even though the old materials have successfully led to prepara-
tion for future learning. The perceptually grounded nature of transfer is also
consistent with results showing that people employ mental models that are analog
in the sense that they intrinsically embody constraints similar to those found in
physical situations, such as the necessity to rotate through intermediate angles
when reorienting an object (Schwartz & Black, 1996a, 1996b). Our students seem
to develop new ways of looking at situations that depend upon their previous learn-
ing, but they are not typically intellectually aware of this debt. However, because the
learned mental models are idealized, they do naturally apply across contexts, and
they also support the development of mathematical formalisms. This “middle-road”
transfer is both perspectival and automatic and is consistent with Mayer’s (2004)
call for specific transfer based on general knowledge.


Situated Learning


A major theoretical position related to transfer was developed in the 1980s and
1990s and called situated learning. This community argued that learning takes
place in specific contexts, and these contexts are essential to what is learned (Lave,
1988; Lave & Wenger, 1991). Traditional models of transfer were criticized as
treating knowledge as a static property of an individual rather than as contextu-
alized or situated, both in a real-world environment and a social community. Ac-
cording to situated learning theorists, one problem of traditional theorizing is that
knowledge is viewed as tools for thinking that can be transported from one situa-
tion to another because they are independent of the situation in which they are
used. In fact, a person’s performance on school tasks is often worse than his or her
performance on a street task even though by some analyses, the same abstract tools
are required (Nunes, 1999).


Our approach has a number of similarities and differences in relation to the situ-
ated learning perspective. One of the primary similarities is that we view the simi-
larity of tasks or situations as the result of activity by both the problem solver and
the community. We are dubious of attempts to find an objective metric for measur-
ing the distance between situations. The educability of similarity is pivotal for us.
Accordingly, we have talked about learning as changing the perceived similarities
between scenarios rather than learning as allowing people to relate dissimilar sce-
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narios (see also Greeno, 2006). A second similarity is that we both emphasize
grounded knowledge. For us, knowledge is not simply in the extracted verbal de-
scription of a situation but rather in the interpretation of a concrete scenario.
Learning consists of developing methods for processing concrete situations, meth-
ods that may be widely applicable.


One of the most obvious differences is that we continue to frame learning in
terms of transfer, a suspect notion for some situated learning theorists (J. S. Brown,
Collins, & Duguid, 1989; Lave & Wenger, 1991). Brazilian children who sell
candy may be quite competent at using currency even though they have consider-
able difficulty solving word problems requiring calculations similar to the ones
they use on the street (Nunes, 1999). This case study has become a paradigmatic
example of the contextualized nature of knowledge according to situated learning
theorists, and it is very different from the kind of cross-domain transfer we have
tried to teach and champion. We have championed this cross-domain transfer be-
cause, as described in the first section, we believe that complex systems principles
are valuable additions to the science curriculum and to science more generally and
that the same complex systems principle arises in numerous domains. Given these
beliefs, we have been compelled to try to distill natural situations to idealized men-
tal models, agent rule sets, and/or mathematical formalisms.


These similarities and differences highlight two different senses of knowledge
decontextualization. We are not advocating decontextualized knowledge in the
sense of formalism-based transfer. Formalisms per se rarely provide the basis for
deep remindings (Ross, 1989). Instead, knowledge should be couched in terms of
learned processes for interpreting concrete scenarios. However, there is another
sense of decontextualization that we do support. We believe in the importance of
complex systems principles, and that the same principle applies in multiple situa-
tions. Accordingly, we support learners acquiring principles of complex systems in
a way that enables the principles to be recognized in the myriad of concrete forms
that they can take. For example, we are interested in people recognizing both mi-
crophones attached to speakers and fashion-buying habits as positive feedback
systems. This is achieved by people creating mental models of the situations that
feature a variable whose presence causes more of the variable to be produced. We
seek learning and teaching methods that enable people to develop mental models
that implement general complex systems principles while at the same time pushing
for spatial–temporal grounding for those models.


Integration With Other Approaches to Transfer


We have proposed transferring complex systems knowledge by having students rig
up their perceptual systems to perceive situations in a manner informed by a pro-
vided or constructed rule set and then simply “leave this rigging in place” when
presented with new situations (see also Goldstone, Landy, & Son, in press). Al-
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though we have been impressed with the effectiveness of this perceptual–interpre-
tive transfer, we certainly do not mean our advocacy to imply the inadequacy of
other methods. Other promising methods include (a) giving students multiple ex-
amples of the same principle (Gick & Holyoak, 1980, 1983), (b) encouraging stu-
dents to explicitly compare (Gentner, 2005) and contrast (Schwartz, Bransford, &
Sears, 2005; Schwartz, Sears, & Chang, in press) deeply related examples to better
appreciate their unique properties (Marton, 2006), and (c) helping students to con-
nect their contextualized knowledge to other efforts in their communities and to
other contexts (Engle, 2006). In fact, our methods can be effectively combined
with these others. Connecting with the second method, students who manipulate
parameters of our ABMs using interactive controls benefit from comparing and
contrasting the results of the minimally different simulation runs. Students who
construct simulations go even further by comparing and contrasting variations in
the underlying model. Connecting to the third method, students who discuss their
predictions for simulation outcomes in a class come to be able to adopt multiple
perspectives on a phenomenon, a particularly useful enterprise when thinking
about ABMs because of their inherent multilevel nature.


Our use of ABMs to teach complex systems topics fits under the wide umbrella
of embodied cognition (Barab & Roth, 2006; Clark, 1998) but also helps to disen-
tangle various claims that are made by this community. Our observations have sup-
ported visuospatial grounding and the importance of educating perceptual–motor
skills, not simply abstract reasoning. We also support a conception of minds as ex-
tended to include the simulations (and other people) with which students interact
to form predictions and understandings. Finally, our simulations are instance
grounded in the sense of instantiating individual agents and their interrelations
rather than modeling summary properties of whole systems. However, given our,
and other researchers’, success with strategic idealizations, we see dangers in
situational grounding when it treats narratively rich, situation-specific details as
necessarily beneficial. Important work must still be done in isolating the separate
consequences of the 5 E’s of “wide” cognitive science (embodied, embedded, ex-
tended, enactive, and ecological cognition). Our current wager is that the kind of
situational information that ought to be preserved when learning complex systems
is that which captures spatially grounded and individual-level interactions.


SUMMARY


Our line of argumentation makes several interrelated claims. (a) We argue that un-
derstanding complex systems principles is important scientifically and pedagogi-
cally. Seemingly unrelated systems are often deeply isomorphic, and the mind that
is prepared to use this isomorphism can borrow from all of science in understand-
ing a concrete scenario. (b) Complex systems principles are unique because they
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lead to the construction of categories that are both perspective dependent and in-
ductively powerful. Because they are perspectival, these categories are not likely to
be discovered without guidance. Teaching these categories is worthwhile because
of their inductive potential. (c) If one is committed to fostering the productive un-
derstanding of complex systems, then one must be interested in promoting knowl-
edge that can be transported across disciplinary boundaries. (d) Our observation of
students interacting with complex systems simulations indicates that one of the
most powerful educational strategies is to have students actively interpret situa-
tions. A situation’s events inform and correct interpretations, and the interpreta-
tions give meaning to the events. (e) One effective way for students to make these
interpretations is for them to construct models of the situations. This is particularly
easy to do using ABMs, for which the modeling is done at the level of the in-
dividual. Modeling requires students to explicitly make interpretive choices. (f)
Perspective-dependent interpretations can promote transfer where formalism-cen-
tered strategies fail, by educating people’s flexible perception of similarity. Trans-
fer, by this approach, occurs not by applying a rule from one domain to a new do-
main but rather by allowing two scenarios to be seen as embodying the same
principle. Complex systems theory opens up new ways of organizing science ac-
cording to underlying principles, not according to established disciplines such as
biology, physics, chemistry, and psychology. (g) To realize this promise, we rec-
ommend that computer simulations be designed or student-constructable so as to
mesh well with idealized mental models. For transportable knowledge, realism is
sometimes disadvantageous. Computer models, like their corresponding mental
models, should be spatially–temporally grounded to take advantage of individuals’
highly evolved perceptual capabilities but idealized in other respects to reduce
cognitive load and increase generality.


As is clear from the preceding paragraph, the steps in this argument depend
upon and extend one another. To the reader’s exasperated question “Is your fore-
most agenda to argue for benefits of thinking in terms of complex systems princi-
ples, or to describe ways of achieving scientific transfer?” our reply is an emphatic
“Yes!” We have fused these two agendas because the cognitive science of transfer
explains why complex systems principles are cognitively beneficial, and the exis-
tence of cross-discipline connections between the sciences motivates the effort to
learn how to achieve transportable knowledge. The transfer of knowledge across
disciplinary lines is cognitively possible because it scientifically exists (see Table
1), and it is scientifically possible because it cognitively exists.
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