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In this paper, we present preliminary results of a study investigating how experts 
make sense of unfamiliar mathematical phenomena. Specifically, 10 mathematics 
graduate students and professors thought aloud and responded to questions as they 
read and tried to understand an unfamiliar, but accessible, mathematical proof in 
the domain of geometric topology. Interview data was coded for experts’ descriptions 
of their own understanding of the mathematical phenomena presented, and for 
instances in which experts systematically linked different types of knowledge to make 
sense of new information. While experts’ pre-existing and post-interview 
understandings of the topics presented varied, general strategies for connecting 
specific types of information to make sense of the proof were identified across 
participants.

Introduction
Typically, studies of expert mathematical activity are based on experts’ descriptions 
of their own mathematical practices, experiences and discoveries, or observations of 
highly performing advanced students and experts as they work with mathematics that 
they have already considered in depth (Tall, 1991; Vinner, 1991; Dubinsky, 1992; 
Sfard, 1992; Schoenfeld, 1985; Wilensky, 1991; Lakoff & Nunez, 2000). Little 
work has been done, however, on understanding how experts think about and make 
sense of an unfamiliar mathematical idea as it is first introduced.

Just as it cannot be taken for granted that mathematics as a field of study is reflective 
of mathematics as a cognitive activity (Papert, 1980; Tall, 1991; Lakoff & Nunez, 
2000); it cannot be taken for granted that the ways in which one describes, 
understands, or even misunderstands an idea with which they have considerable 
formal experience is indicative of the processes by which that idea was first 
acquired. If we are to describe expert acquisition and building of ideas, we must 
take all aspects of knowledge into account: not only the structure, description and 
use of knowledge that experts already possess, but also how experts acquire and 
build new mathematical knowledge. With this study, we attempt to investigate how 
this process of knowledge acquisition and construction occurs as an expert engages 
with a common tool of his discipline – a mathematical proof.

Theoretical Framework
This study aims to describe the nature of mathematical knowledge – both its 
structure, and how that knowledge is built and enacted in authentic expert practice. 
Therefore, this section will concentrate on major theories of expert knowledge, 



expert practice, and how these theories inform the design and analysis of the study.

The Structure of Expert Mathematical Knowledge
It is well established that the knowledge possessed by novice and expert 
mathematicians In novices and students, this collection of experiences, images, 
features and examples is described as a concept image (Vinner, 1991) or “informal 
knowledge” (Schoenfeld, 1985). As these individuals move to expertise, however, 
these collections of experiences are described as encapsulated or reified into a 
mathematical object with associated processes (Tall, 1991; Sfard, 1992). This 
distinction – between possessing mathematical knowledge that is better described as 
encapsulated and object-like entities versus a collective store of experiences and 
informal understandings – is cited as a hallmark of expertise and advanced 
mathematical thinking. We cannot assume, however, that every new mathematical 
idea that an expert encounters is automatically understood as such a formal 
abstraction. While the encapsulated view of mathematical expertise is particularly 
well-suited for analysing expert practice as it related to well-known mathematical 
ideas with which one has had considerable experience, it does not necessarily 
illuminate the process by which such encapsulation occurs, or how new information 
about an idea is incorporated into an existing organization of knowledge.

Instead, we use the notion of understanding as connection (Skemp, 1976; Papert, 
1993) and expert knowledge as dense connection between mathematical rules, 
examples, images, everyday experience, and other resources an expert encounters 
during study. These rules, examples, and so forth can vary from person to person as 
a result of one’s background knowledge, experiences, their own interpretation of the 
mathematics as presented in disciplinary materials (Wilensky, 1991). This is not to 
discount the usefulness of the encapsulated view of expert knowledge – indeed, , but 
rather to illuminate the mechanism by which that encapsulation occurs – in other 
words, to find out how mathematical ideas unknown to an expert can eventually 
come to be understood by them in a formal way. 

Expert Mathematical Practice
If expertise is characterized by encapsulated or densely connected knowledge that 
can be deconstructed and reconstructed in a number of ways (Tall 2001), then it is 
not only the structure of knowledge, but also the act of identifying, manipulating, 
and coordinating that knowledge that is an important component of expertise. For 
example, Schoenfeld (1985) showed that experts are more likely to monitor their 
own progress when solving problems, and that experts often employ general-purpose 
problem solving heuristics unknown to novices. Sierpinska (1994) notes that a 
distinction should be made between one’s resources for understanding and acts of 
understanding, in which such resources are put to use in order to solve a problem or 
make sense of some mathematical idea.  Duffin and Simpson (2000) refer to one’s 



ability to not only have, but to build and enact knowledge.

In the context of describing knowledge and understanding as connections between 
existing and acquired knowledge resources, it makes sense to also investigate the 
strategies by which such connections occur. How do experts select and coordinate 
existing and new pieces of a given mathematical phenomenon in order to make sense 
of, or create, new mathematics? Are the combinations of elements used to build, as 
opposed to enacting knowledge, different? 

Research Questions
1) What is the nature of knowledge acquired by experts as they encounter and 

make sense of a new or unfamiliar mathematical idea?

2) How is this newly acquired knowledge employed by experts to build an 
adequate understanding of some new or unfamiliar mathematical idea? 

METHODS
Participants
10 participants, including 8 professors (assistant, associate, and full) and 2 advanced 
graduate students from a variety of 4-year universities in the Midwest participated. 
Preliminary analysis of 3 interviews is included in this paper. Participants were 
identified primarily through university directory listings, and contacted via email to 
see if they would agree to be interviewed. In the email, participants were told that 
we were interested in how experts reason about mathematics, and that they would be 
provided an unfamiliar proof and asked to discuss the ideas presented within. 

Protocol
Students and professors who wished to participate were given semi-structured 
clinical interviews using a think-aloud protocol (Ericsson & Simon 1993; Chi, 1997; 
Clement, 2000). Each was provided with the same mathematics research paper 
(Stanford, 1998) – not directly related to any of the interviewees’ specific fields of 
research – selected for its relative accessibility in terms of complexity and 
vocabulary. They were asked to read the paper and try to understand it such that 
they would be able to teach it to a colleague. They were also asked to describe what 
they understood of the mathematical ideas presented as they read, if this did not 
come up naturally in the course of the interview.  Interview data was videotaped, 
transcribed, and coded using the TAMSAnalyzer software. The coding system is 
discussed below.

Proof
The research paper provided to participants (Stanford, 1998) concerns links, which 
can be thought of informally as arrangements of circles of rope that are entwined 



with one another, and the conditions under which those circles can be pulled apart. 
If a link has the property that when any single circle is removed from the 
arrangement, the rest can be pulled apart, that link is said to be Brunnian. If, as a 
result of the entwining of circles, one circle passes over (or under) a different circle, 
this is called a crossing. If part of one circle passes over another circle and is 
rearranged so that it then passes under the other circle, this is called changing 
crossings. Finally, if all circles in a link are arranged such that there are n distinct 
collections of crossings that, when changed, make the loops fall apart, the link is 
said to be n-trivial. A trivial link is one for which all circles can be pulled arbitrarily 
far away from one another (or, can be reduced to a point without touching one 
another). The proof establishes a systematic relationship between the properties that 
make a link Brunnian and n-trivial, such that any Brunnian link can be described as 
(n-1)-trivial. 
DATA
Two sets of codes were used. First, any descriptions of mathematical knowledge 
were classified as one of six distinct categories: a parent, fragment, example, 
construction, prototype, or definition. Although these categories were derived for 
this study specifically and thus may be an artifact of the structure and content of the 
task provided to participants, we believe that it is applicable to additional domains of 
mathematics.  To illustrate this, each category description includes a real example 
obtained from interview data, and a hypothetical example to illustrate how each 
category would apply to possible descriptions of even numbers. 

Parent. Aspects of some mathematical idea that are inherited from more familiar 
experiences or understandings related to the idea under consideration.

Ted: Some guy I knew in grad school did some sort of knot theory things, and had I 
don't know, lots of little lines that were supposed to represent little loops and he'd 
move them around and see if he could make them look more complicated or less 
complicated. And so I'm thinking it's somehow related to that, but I don't have a good 
sense.

Even numbers as a type of integer: “Well, I know that even numbers are a kind of 
number, so I can perform operations like adding and subtracting with them”.

Fragment. Components, pieces, or relations that comprise the building blocks of a 
mathematical idea or object; or ways to divide the idea into smaller, easier to 
manage pieces.

Ana: “the rest is trivial whatever that means, and I'm assuming that means the 
disjointed circles.”

Groups of two as fragments of an even number: “They are made up of groups of 2”

Example. Specific instantiations of the idea being considered that are immediately 



available to an individual, either via recall or because it is provided.
Mike: “Yea, the Borromean rings should be... I know enough... they have that 
property… that when you unlink a component, you get a trivial knot.”

The number “10” as an instance of an even number: “I know that 10 is one”

Prototype. Special instantiations of the idea being considered that are assumed to be 
representative of a more than one single example or instance of the idea.

Joe: so, so my definition was sort of, construct a canonical example and say this is, any 
Brunnian link is isotopic to this brunnian link, so.. it’s like a representative of 
equivalence classes of brunnian links, so…

The last digit of a number as an indicator of evenness: “every number that ends with 
0”

Construction. Ad-hoc example, usually developed by combining fragments, 
examples, and/or prototypes in some way.

Mark: Okay. And so if I got something like that [forms circle with one finger] and 
[interlocks with other finger] something interchanging here, if I remove one of the 
links the other two come apart, then that's what they're talking about .

An even number as constructed from fragments: “They are made of groups of 2, and 6 
is three groups of 2, so 6 is even”.

Definition. Complete descriptions of the behavior, structure, or properties of the 
focal mathematical idea, which accounts for all instances of the idea.

Joe: …he’s saying if we have n-components of brunnian… whenever [turning page] 
you look at… whenever you throw away one of the components you have something 
trivial.

A formal definition of an even number: “Any integer multiplied by 2.”

Second, experts’ responses to interviewer questions and their think-aloud statements 
while reading the proof were coded as questions, solutions, or explanations. For 
example, if an expert simply states that she does not understand some aspect of the 
proof, that statement would be coded as a question. On the other hand, if the expert 
is not immediately familiar with some aspect of the proof, but is able to use 
definitions, examples, or other features described within the proof to arrive at an 
explanation of that aspect, that statement would be coded as a solution. Finally, if an 
expert asserts that she was already familiar with phenomena described in the proof 
and simply describes that existing understanding, that statement would be coded as 
an explanation. While there are some differences, these codes map particularly well 
to previous theories of mathematical understanding – notably, Duffin and Simpson’s 
(2000) classification of understanding as building, enacting, and having 
understanding. Each question, solution, and explanation could contain any number 



of parents, fragments, examples, and so forth.

Question. Participant does not understand some aspect of the proof.
Joe: Okay. [takes pencil] Okay, so they’re saying something about… n-

triviality, I’ve never heard of that…

Interviewer: Do you have any idea of what that might mean?

Joe: Not a clue.

Solution. Participant is unfamiliar with some aspect of the proof, but is able to use 
other components of the proof such as definitions, examples, and so forth to arrive 
at an explanation. 

“So he's saying here are these crossings, these are in one set and these two are in 
another set. But then what does it mean to change them? [pause] So suppose I picked 
um one corresponding to A, what am I supposed to do what does that mean to change 
them? I wonder if it means to go from an up crossing to a down crossing, so let's try. 
[…] oh yeah, see I do think I'm right, because that circle is disengaged by changing 
these two crossings okay. So changing crossings means going from up crossing to 
down crossing. Until two pages later when we'll realize that that's wrong.” (Ana)

Explanation. Participant is familiar with some aspect of the proof, and readily 
describes their understanding of that aspect. 

[reads] Note that n-trivial implies n-1 trivial for n > 0. [done reading] Which of course, 
if you remove one link and it’s trivial, and then you remove another link, well it’s 
already trivial. You’re expanding on your triviality, you’re feeling… really trivial. 
(Greg)

Results
First, experts varied dramatically in the amount of background knowledge they 
possessed and employed when solving problems, and this affected the resources that 
they had available to make sense of the proof. However, the types of knowledge 
employed for different expert statements were relatively consistent: for example, 
experts are much more likely to refer to examples, constructions, or prototypes when 
working on a solution than when asking a question or explaining an already 
understood component of the proof. Similarly, experts are more likely to refer to 
multiple definitions within explanations rather than within questions or solutions – a 
sign, perhaps, of mature understanding in which an expert is able to, as expected “…
link together large portions of knowledge into sequences of deductive 
argument” (Tall, 1991, p. 4). 
Statement Types
While all participants exhibited a relatively even distribution of statement types – 
that is, they all explained, asked questions, and found solutions during the interviews 



– the number of elements of the proof that they brought together within each 
statement type varied. Notably, for all three participants that have been analysed, 
more elements of the proof were brought together in solutions than in any other type 
of statement, and less elements were brought together for explanations. This may 
indicate that experts build the most knowledge – that is, they make the most 
connections between knowledge elements – when they do not fully understand all of 
the components needed for a given mathematical idea. Similarly, the small number 
of elements involved in a given explanation may reflect the object-like, unitary 
nature of well-understood (or, depending on perspective, well-connected) knowledge 
commonly described in studies of expert performance with ideas with which they 
have had a great deal of experience.

Ana Mark Joe All
Explanations 42% 35% 43% 41%
Questions 32% 29% 28% 30%
Solutions 26% 35% 29% 41%
Elmts. per Q 2.31 2.00 2.41 2.24
Elmts. per S 2.60 3.16 3.20 2.99
Elmts. per E 1.33 1.60 2.21 1.75

Table 1. Statement types and elements per statement type by participant

Patterns Within Statement Types
In addition to patterns in the number of elements mentioned in a given type of 
expert statement, there were also patterns in the type of elements mentioned in 
various types of statements. Below, we discuss two of these patterns: the high 
frequency of direct connections between fragments (F) and definitions (D) or 
between more than one definition (DD) within explanations (DF~E; DD~E), and the 
high number of embodiments (E; examples, constructions, or prototypes) that 
accompany connections made between fragments and definitions within solutions 
(FED), and the low frequency of questions in these categories asked by Mark – a 
function, perhaps, of his increased use of parent references to make sense of 
unknown elements within the proof.

Patterns Statements Ana Mark Joe All
DD~E Explanations 50% 0% 18% 12%

Questions 8% 0% 29% 19%
Solutions 0% 17% 27% 19%

FD~E Explanations 50% 60% 27% 46%
Questions 25% 0% 43% 23%
Solutions 10% 17% 33% 20%



FED Explanations 6% 0% 9% 5%
Questions 0% 0% 0% 0%
Solutions 20% 33% 13% 22%

Table 2. Frequency of multiple definitions (DD~E), definitions and fragments 
(FD~E), and definitions and fragments with an embodiment (FED) within 

statements

Embodiments (E) – items coded as examples, constructions, or prototypes – were 
much more likely to occur within solutions: statements in which experts did not 
readily understand an idea presented in the proof, but were able to build an 
understanding using other pieces of the idea. When embodiments did occur, they did 
so within the context of a solution. It might be that, when participants did not 
readily understand how two definitions, or a definition and a fragment were related, 
they used embodiments to help form those connections, which later manifested as 
well-understood explanations without those scaffolding embodiments (DD~E and 
FD~E).

Conclusion
In this paper, we presented a framework, coding system and data illustrating how 
experts acquire and synthesize knowledge to make sense of new and unfamiliar 
mathematical concepts. Preliminary results suggest that though expert knowledge is 
often described as encapsulated or object-like, it may be experts’ familiarity and 
systemic interaction with a given idea – rather than an experts’ status as an expert – 
that results in this organized structure.  Instead, expertise may lie in the ways that 
experts combine and scaffold their knowledge in order to identify, acquire, and 
build dense connections between components of a mathematical idea. 
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