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Abstract: Many studies have examined how learners make sense of the traditionally difficult
ideas of levels and emergence in complex systems by interacting with visuospatial multi agent
based models. In this poster, we review these findings through the lens of human basic
perceptual/representational systems. We argue that many of learners’ observed strategies and
explanations surrounding the ideas of levels and emergence are supported by visualizations
that leverage perceptual systems related to objects, motion, and geometry.

Introduction

Recent research has documented the need for integration of complex systems methods and ideas into
pre-college curriculum. At the same time, it has documented a number of difficulties in learners’ ability to grasp
the key concepts of complex systems (Jacobson & Wilensky, 2006). One such difficulty concerns the
relationship between micro-level behavior and the associated emergent macro-level behavior that results, even if
both levels are recognized as occurring. Visuospatial agent-based modeling (ABM) systems, such as the
NetLogo (Wilensky, 1999) modeling environment, have been shown to help learners form these connections. By
re-representing difficult or misunderstood phenomena in terms of micro-level interactions, learners are better
equipped to accurately describe, explain, and even predict the behavior of traditionally difficult scientific and
mathematical phenomena. But what is it about visuospatial ABMs that promote these deep understandings?

In this paper, we discuss several design-based research findings regarding how learners make sense of
emergence using visuospatial ABMs in light of relevant research in cognitive and developmental psychology that
describe how learners extract and process information from visual stimuli. We contend that learners make sense of
ABMs by leveraging knowledge systems particularly related to object perception, motion tracking, and geometry.

Perceptual Supports for Sensemaking: Evidence from Learners

Research over the past several decades has identified specific “core knowledge systems” (representing
objects, agents, number, geometry; Spelke & Kinzler, 2007) that are considered to be particularly important in
guiding the ways that humans organize and understand the world around them. While there is certainly
controversy regarding the relationship between perception and conception in these systems, it is well established
that they play an important role in human information processing, whether those actions are in the world or
projected on a computer screen (Johnson & Nafez, 1995). We suggest that several of these systems can provide
perceptual support for successful reasoning about ideas of levels and emergence. For this poster, we concentrate
on the “object” and “geometry” systems in the context of agent-based systems by highlighting individual micro-
level objects and their interactions, mid-level collections of objects as they move through space, and aggregate-
level emergence of geometric and topological patterns within the agent-based visualization.

The Micro-Level and Object Perception.

The most well studied “core system” is object perception. Specifically, an object is expected to have
three basic properties: cohesion, continuous motion (if moving), and interaction only upon contact (for example,
objects change direction only if they hit another object; Spelke, 1990). And the object principles — particulate
agents, continuous movement, and elastic collisions — are some of the very agent-based phenomena that
contribute to important, and often misunderstood, emergent scientific properties.

Several models built within the NetLogo programming environment illustrate macro-level emergent
phenomena such as gas behavior (Steiff & Wilensky, 2003; Wilensky, 2003) or electrical current (Sengupta &
Wilensky, 2006) by restructuring and describing that phenomena in terms of easily noticed and understood
interactions: objects’ movement and contact with other objects. Electrical current is illustrated as an emergent
property of particulate behavior of electrons and the Maxwell-Boltzmann distribution as emerging from elastic
collisions of gas particles. Learners are able to more accurately explain and predict aggregate-level behavior in
terms of object-based principles after interacting with such models (Sengupta & Wilensky, 2006).

Mid-Levels and Motion Tracking.
Related to basic object perception is the ability to keep track of multiple moving objects at a time.
Humans are limited in the number of independent objects they can visually track at a given time: usually, they
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can only track about three or four (Spelke & Kinzler, 2007). Findings suggest that this limitation on the number
of objects that can be independently tracked at one time provides support for the formation of visual mid-level
groups, which have been shown to be particularly useful for learners who are working to understand the ways in
which micro-level behavior contributes to macro-level emergent phenomena (Levy & Wilensky, 2007).

When interacting with ABMs of electrical current, learners describe visually tracking a small group of
moving agents (electrons) in order to understand agent interactions relative one another. These small collections
of agents, whose behavior is judged relative to a locally-anchored landmark, consist of groups of four to six
single entities (Sengupta, Wilkerson & Wilensky, 2007). These groups allow for two separate, but equally
important recognitions: that micro-level patterns of electron scattering resulted from increases in wire resistance,
and that this scattering in turn affected the macro-level movement of groups of electrons through the wire.

The Aggregate Level and Geometry.

Finally, humans are able to quickly notice the general geometric and topological features of a visual
stimulus. This supports learners’ propensity to notice emergent or aggregate patterns — if and when those
patterns are visually represented — in visuospatial models. In NetLogo, these aggregate phenomena can take the
form of topological relationships (for example, the difference between one flock of birds or many separate ones,
or the shift from several termite mounds to one), near-far relationships (for example, when moths flock toward a
light), or concave and convex differences (for example, during the growth of microscopic grains within a given
material; Blikstien & Wilensky, 2004).

Moving Forward

Studies that isolate features of the display that leverage perceptual supports such as those described
above may inform future designs: for example, while agents with well-defined borders seem to emphasize
interactions based on motion and contact (by leveraging the object perception system as a support), agents with
fuzzy borders that overlap might emphasize macro-level emergent phenomena such as the formation of groups
of certain types of agents (Kornhauser, Rand & Wilensky, 2007). Highlighting groups of four or five agents may
or may not explicitly support the creation of mid-levels. Similarly, the addition of “living” agent-related features
such as eyes or faces to models of social and behavior phenomena may encourage the use of human “agent”
perception systems (Spelke & Kinzler, 2007), for which humans expect behavior to be goal-oriented.

Research on the ways in which dynamic displays leverage these perceptual systems may also provide
insight into when dynamic visualization may be most effective. Research suggests that often, animation is not
effective as an instructional tool because the depicted events are not “accurately perceived and appropriately
conceived” (p. 247, Tversky, Morrison & Betrancourt, 2003). We suggest that a better understanding of the
perceptual systems that are most likely to support appropriate interpretations of featured content might outline
principles for designing effective visualizations — and encouraging appropriate conceptualizations — of emergent
mathematical, social, and scientific phenomena.
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