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Appropriate Tools:  

On Grounding Mathematical Procedures in Perceptual Intuitions 

Dor Abrahamson, University of California, Berkeley 

Abstract: I report on a design-based research case study in the area of middle-school probability that served 

as a context for investigating whether students can build meaning for the disciplinary tools they are taught 

to use, and if so, what personal, technological, and interpersonal resources may support this process. The 

topic of binomial distribution was selected due to robust literature documenting students’ apparent 

‘misconceptions’ of expected likelihoods. Li successfully built upon his event-based intuitive sense of 

likelihood in developing the outcome-based notion of sample space. Utilizing cognitive-science, 

sociocultural, and cultural–semiotic theoretical models of mathematical learning, the construct ‘semiotic 

leap’ is developed herein to explain Li’s insight as appropriating an available artifact as a means of 

warranting his intuitive inference. 

Objectives 

Can students construct meaning for the mathematical procedures they learn to use in 

school? What cognitive, technological, and social mechanisms might facilitate this 

learning process? In particular, what roles may semiotic tools—material objects, 

diagrams, symbols, speech, gesture, etc.—play in a guided learning process in which 

students come to see mathematical content as enhancing their perceptual intuitions? And 

to the extent that students can use perceptual judgments to perform intuitive inferences 

that are aligned with normative mathematical knowledge, what would the implications of 

an intuition-based learning process be for the adequacy of theories of learning that are 

based exclusively either on the cognitive sciences or on sociocultural theory? 

This proposed paper communicates the case study of Li, a 6
th

-grader, who was guided to 

build on his intuitions of likelihood as he took first steps in learning fundamental notions 

of probability within the context of a single interview-based tutorial interaction. I will 

claim that despite initially experiencing stark discrepancy between his intuitive notions 

and the procedures that he performed, Li eventually succeeded in coordinating these 

resources, albeit this coordination was abductive, embryonic, and still unstable. 

 

Theoretical Background 

This study is aligned with the constructivist perspective whereby: (a) mathematical 

understanding is viewed as developing from naïve intuitions that are persistent yet 

become qualified, calibrated, refined, and reorganized, on the basis of feedback in diverse 

contexts, into the complex structures that are manifest as mastery in a domain; and 

therefore (b) educators should identify, embrace, and work with students’ intuitions (e.g., 

diSessa, 2008). Accordingly, the learning materials, activity sequence, and facilitation of 

this study, as well as the data analysis, are all oriented toward treating mathematical 

learning as an individual’s negotiated reconciliation of personal schemata for 

mathematical situations with mediated engagement of cognitive artifacts (Greeno, 1998; 

Saxe & Esmonde, 2005; Sfard, 2002; Stetsenko, 2002; Stevens & Hall, 1998). 

Due to its canonical perception as counterintuitive, probability appeared to present an 

ideal disciplinary topic for examining relations between intuition and learning. In 

particular, people tend to think that a coin flipped four times will more likely land on 

“HHHT” than on “HHHH,” whereas according to probability theory these outcome 
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sequences are equiprobable (adapted from Tversky & Kahneman, 1974). I propose to 

interpret students’ “P(HHHT) > P(HHHH)” responses as resulting from a “legitimate 

reconstruction of the problem” (Borovcnik & Bentz, 1991; see also Chernoff, 2007). 

Specifically, I submit that intuitive judgment of outcome frequency privileges the number 

of occurrences of the binomial values ‘H’ and ‘T’ (or the ratio of H’s to T’s) at the 

expense of attention to their order, thus encoding ‘HHHT’ as “3H, 1T.” Moreover, this 

intuitive judgment would underlie a correct answer to a question that ignores the outcome 

order, because “3H, 1T” is indeed more likely that “4H”—it is four times as likely 

(compare the four possible outcome sequences with exactly three heads—HHHT, HHTH, 

HTHH, THHH—with the single possible outcome sequence that has four heads, HHHH) 

(related work: Amit & Jan, 2007; Drier, 2000; Iversen & Nilsson, 2007; Jones, Langrall, 

& Mooney, 2007; Kazak & Confrey, 2007; Pratt, 2000; Wilensky, 1995, 1997). 

Methods: An Intuition, a Procedure, and an Activity to Potentially Connect Them 

Learning Tools. The marbles box (see Figure 1) contains a mixture of hundreds of 

marbles of two colors, with equal numbers of each color (green and blue), and the 

marbles scooper is a utensil for drawing out of this box samples of exactly four marbles. 

These devices thus constitute a random generator of type “urn,” a mathematical artifact 

which is widely used and/or referred to in probability literature, only that: (a) the marbles 

box is an open urn, so that the color ratios are exposed for perceptual inspection; and (b) 

the scooper’s structural properties impose constraints on the possible spatial 

configuration of the independent outcomes within the compound-outcome sample. I 

assumed that affixing the locations of the independent outcomes might create 

opportunities for a student and facilitator to co-attend to the phenomenal property of 

order as a potentially meaningful parameter, i.e., as bearing on the question of anticipated 

outcome distribution. Moreover, the built-in 2-by-2 configuration could serve as a ready 

template for determining the set of “what we could get,” i.e., for building the sample 

space. Students were further provided with an ample stock of cards, each bearing an 

empty 2-by-2 matrix (see Figure 2), as well as two crayons (green and blue). 

Furthermore, I marked one edge of the matrix with a thicker line, as a means of cueing 

the idea that a rotation permutation might be interpreted as a discernable outcome.  
  

  

Figure 1. The marbles-scooper random 

generator (set at n = 4, p = .5)  

Figure 2. A card for constructing the 

sample space 
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Participant and Procedure. Li, a 6
th
-grade student, was one of 28 Grade 4 – 6 

participants in a study conducted at a suburban school (Abrahamson & Cendak, 2006). 

Li, who was rated by his mathematics teachers as a ‘high achiever,’ was verbose, 

articulate, and argumentative. His generally engaged disposition throughout the interview 

as well as the contents of his observations were not atypical with respect to the majority 

of participants in this study, yet Li’s comfort and confidence in expressing his beliefs, 

even as these were shifting, were especially illuminating of his reasoning process. The 

study consisted of conducting a one-to-one semi-structured ~30-minute clinical 

interview, which implemented a prepared protocol (diSessa, 2007; Ginsburg, 1997): First, 

we present the marbles-scooping equipment, demonstrate its mechanism by letting the 

student scoop several times. We then ask the participant, “What do you think will happen 

when I scoop?”; Next, we present the cards and crayons and guide the participant to color 

in “all the different scoops we could get” and assemble this sample space into a 

combinations tower, a histogram-shaped structure (see Figure 3). 

 

Figure. 3. The combinations tower 

Data Collection and Analysis. All interviews were audio/video-taped for subsequent 

analysis. We worked in the traditions of collaborative microgenetic analysis (Schoenfeld, 

Smith, & Arcavi, 1991; Siegler & Crowley, 1991) and grounded theory (Glaser & 

Strauss, 1967).  

 

Results and Discussion: Analysis of a Case Study 

To demonstrate the nature of the analytic work reported in the full paper, I shall briefly 

focus here only on a single 3-minutes episode, wherein, I claim, Li reinvented classicist 

probability. Prior to this episode, Li—similarly to the other 27 participants—had guessed, 

on the basis of visually scrutinizing the marbles-scooping random generator, that the 

empirical distribution in hypothetical experiments would bear a plurality of outcomes of 

type ‘2 green, 2 blue’ (hence, 2g2b - see Abrahamson, in press). However, in explaining 

his reasoning, Li switched to claiming that 2g2b has a one-in-five chance (which I 

interpret as a case of 'ontological imperialism,' Bamberger & diSessa, 2003, i.e., a dire 

consequence of prematurely imposing upon learners semiotic tools that they cannot as yet 
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use as means of expressing their preformulated notions). Accordingly, in building the 

sample space, Li created only five cards (the bottom row of Figure 3, above). However, 

through the following exchange, once he has created the combinations tower, Li—

similarly to all-but one of the other 27 participants, will come to assert that the entire 

collection of cards should be considered in determining the expected outcome 

distribution (Abrahamson, in press).  

Res:  You see this [gestures toward the entire sample space], and you 

say the chance of getting, uhhh, two… the chance of getting, 

uhhh, a… scooping something with two-green is one-out-of-five.  

Li:  /5 sec/ Well, actually… /3 sec/ yeah [one-out-of-five]! 

Res:  Ok.  

Li:  /2 sec/ Actually, /7 sec/ it kinda seems like it would be six-

out-of-sixteen. 

Res:  Huh! Ok, so what… so… ‘One-out-of-five’ now went to ‘six-out-of-

sixteen.’ What….how… 

Li:    Well, it’s like… 

Dor:    That’s quite a difference! 

Li:  Yeah. It… /10 sec/ Well, there are sixteen… /4 sec/ Well, 

actually… /10 sec/ No, it’s still—I think it still would be one-

out-of-five. 

Res:  Mm’hmm. So if I scoop, about a fifth of the time I’ll get a… 

something with two. 

Li:  Two of each. 

 

  
Figure 4a. Li sees the permutations as irrelevant 

to the task 

Figure 4b. A schematic 

representation of Li’s perceptual 

construction of the sample space  
 

Res:  Ok. So… 

Li:   ‘Cause like, these [indicates all 11 cards above the bottom 

row of five cards] don’t really matter. [see Figures 4a & 4b] 

Res:  In what sense?  
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Li:  Well, if you’re looking to… /4 sec/ Well, if the placement 

mattered [gestures back and forth between the scooper and the 11 

cards], these would matter, but these [eleven cards] are all the 
same thing. These [within the 1g3b column, indicates the three 

cards above the bottom card] are the same thing as this [points 

to the bottom card] except for the placement [repeats gesture 

pattern for the 2g2b column and the 3g1b column]. So it’s these 

same original five [indicates bottom row] or, like, any one of 

these [indicates that any of the cards above the bottom row could 

replace its respective bottom card]… /3 sec/ that matters. 

Res:  /5 sec/ So, I mean, this issue of ‘placement,’ that seems to be 

what the… It’s not just, like, you and me deciding, “Let’s use 

placement” or “Let’s not use placement.” It’s, like, How does 

that relate to the situation in the world, like, the scooping?—

Should we care about placement or not? And it seems like you’re 

saying… “not.”  

Li:  Uhhm, yeah.  

 

 
Figure 5. “20 of these, 20 of these…” (overlays indicate highlighted columns) 

 

Res: Ok. So your prediction is that if we scooped, say… I donno, 100 

times, we’ll get about 20 of these, 20 of these, 20 of these, 20 

of these, 20 of these? [each of the “20 of these” utterances is 

accompanied by a gesture, pen in hand, toward a column in the 

combinations tower, beginning with the right-most, 4g column, and 

moving to the left (see Figure 5)]. 

Li: /5 sec/ Actually, no. I would… I’m going back to… there’s, out of 

all the possibilities you could get, six-out-of-sixteen are two-

and-two, and these [indicates the 0g and the 4g cards] are only 

one-out-of-sixteen, so… Like, what I was saying—“one-out-of-five 
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chance”—that would mean… /6 sec/ ‘Cause, [vehemently] you’ll get 
these [hand sweeps up and down the 2g column] more than these 

[holds up the single 4g card], ‘cause there’s six of these and 

there’s only one of these.  
 

In the full paper (Abrahamson, in press), I bring to bear empirical findings and constructs 

from the cognitive sciences, socio–cultural theory, cultural semiotics, and pragmatics—

which, I propose, should be viewed as complementary—so as to explicate the 

epistemological nature and underlying mechanisms of Li’s fragile insight (Fauconnier & 

Turner, 2002; Gelman & Williams, 1998; Grice, 1989; Hutchins, 2005; Radford, 2003; 

Stavy & Tirosh, 1996; Tsal & Kolbet, 1985; Xu & Vashti, 2008). 

Conclusion, Implications, and Significance 

Students can construct personal meaning for the mathematical procedures they learn to 

use as problem-solving tools, even when they initially do not understand the rationale of 

these cultural artifacts. For researchers, a full understanding of such learning-through-

using processes requires an integrated theoretical perspective encompassing both the 

cognitive sciences and sociocultural theory. That is, analyses of artifact-mediated 

learning as participation in apprenticeship (Lave & Wenger, 1991), discursive activities 

(Cobb & Bauersfeld, 1995; Sfard & McClain, 2002), or acculturation into reflective 

praxis (Radford, 2006), should be complemented with attention to individuals’ struggle to 

align intuitive and cultural resources. Individual learning transpires at the nexus of 

complex bottom-up and top-down dialectical processes (Clancey, in  press; diSessa, 

1993). 

An epistemological commitment of the proposed integrated theoretical perspective, as 

well as a concomitant heuristic design framework, is that some mathematical concepts 

can be learned through a process of initially “meaningless” tool use that is nevertheless 

crafted so as to lead up to students’ abduction of analytic procedures. One effective 

strategy for facilitating students’ grounded appropriation of cultural tools is to design 

mathematical situations that tap students’ intuitive schemes and then facilitate activities 

through which students take semiotic leaps, i.e., come to see the tools as semiotic means 

for warranting their preformulated intuitions, even before these processes are inscribed 

symbolically. Such guided learning can ultimately be as meaningful for students as other 

types of discovery-based processes practiced in constructivist curricula, because the 

students experience personal invention of the procedure-as-instrument even in the midst 

of learning to perform this procedure with ready-made tools (see Vérillon & Rabardel, 

1995, on 'instrumental genesis').  

Specifically for the topic of basic probability, this study constitutes empirical support for 

the conjecture that students’ event-based intuitive expectation of likelihoods in 

experiments with random generators is qualitatively in accordance with mathematics and, 

moreover, that this intuition can ground the mathematical procedure of outcome-based 

combinatorial analysis. Thus, the intuitive sense of likelihood, which Tversky and 

Kahneman (1974) regard as a bias-prone heuristic, is in fact a useful cognitive resource 

that can and should be embraced in the teaching and learning of the binomial. This, 

counter to decades of curriculum research that has been struggling to eradicate learners’ 

naïve intuition of likelihood.   
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