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This article reports on a case study from a design-based research project that investigated how stu-
dents make sense of the disciplinary tools they are taught to use, and specifically, what personal,
interpersonal, and material resources support this process. The probability topic of binomial distribu-
tion was selected due to robust documentation of widespread student error in comparing likelihoods
of possible events generated in random compound-event experiments, such as flipping a coin four
times, for example, students erroneously evaluate HHHT as more likely than HHHH, whereas in fact
these are 2 of 16 equiprobable elemental events in the sample space of this experiment. The study’s
conjecture was that students’ intuitive reasoning underlying these canonical errors is nevertheless in
accordance with mathematical theory: student intuition is couched in terms of an unexpanded sample
space—that is, five heteroprobable aggregate events (no-H, 1H, 2H, 3H, 4H), and therefore students’
judgments should be understood accordingly as correct, for example, the combination “3H, 1T” is
indeed more likely than “4H,” because “3H, 1T” can occur in four different orders (HHHT, HHTH,
HTHH, THHH) but “4H” has only a single permutation (HHHH). The design problem was how to
help students reconcile their mathematically correct 5 aggregate-event intuition with the expanded
16 elemental-event sample space. A sequence of activities was designed involving estimation of the
outcome distribution in an urn-type quasi-binomial sampling experiment, followed by the construc-
tion and interpretation of its expanded sample space. Li, whose experiences were typical of a total
of twenty-eight Grade 4–6 participants in individual semi-structured clinical interviews, successfully
built on his population-to-sample expectation of likelihood in developing the notion of the expanded
sample space. Drawing on cognitive-science, sociocultural, and cultural-semiotics theories of mathe-
matical learning, I develop the construct semiotic leap to account for how Li appropriated as a warrant
for his intuitive inference an artifact that had initially made no sense to him. More broadly, I conclude
that students can ground mathematical procedures they are taught to operate even when they initially
do not understand the rationale or objective of these cultural artifacts (i.e., students who are taught a
procedure can still be guided to re-invent the procedure-as-instrument).

Correspondence should be addressed to Dor Abrahamson, Graduate School of Education, 4649 Tolman Hall, Univer-
sity of California, Berkeley, Berkeley, CA 94720-1670. E-mail: dor@berkeley.edu
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176 ABRAHAMSON

Experience can never be equated with concepts. But experience is not “undefined” either. It is more
organized, more finely faceted by far, than any concepts can be. And yet it is always again able to
be lived further in a new creation of meaning that takes account of, and also shifts, all the earlier
meanings. (Gendlin, 1982, p. 166)

OVERVIEW AND OBJECTIVES

Can students construct meaning for the mathematical content they learn in school? What cognitive,
technological, and social mechanisms might enable this learning process? In particular, what roles
may semiotic tools—material objects, diagrams, symbols, speech, gesture, and so on—play in
guiding students to appreciate mathematical procedures as enhancing their intuitive inferences?
And what would be the implications of such a grounded developmental trajectory for the adequacy
of theories of learning that are based exclusively either on the cognitive sciences or on sociocultural
theory?

These are heady, persistent questions pertaining to ontological development in the social
context—questions that frame a whole cross-disciplinary research program, if not the lion’s share
of mathematics-education research. What I will attempt here, though, is to communicate one
case study, in which Li, a sixth-grade student, was guided to engage his intuition of likelihood as
he took first steps in learning fundamental notions of probability within the context of a single
interview-based tutorial interaction. Li’s reasoning, I will claim, can be broadly characterized as
a struggle to reconcile tacit knowledge and disciplinary practice. At the outset Li was shown a
situation involving material objects and operations upon these objects, and he was asked about
quantitative properties of this situation. Li offered a mathematically correct proposition that
he inferred intuitively from perceptual judgment of the situation. Subsequently, Li was asked
to warrant this proposition and was encouraged to do so by using a variety of analytic tools,
and Li complied by engaging in relevant construction. Consequently, though, Li renounced
his initial assertion, because his naı̈ve reading of the mathematical artifacts suggested to him
alternative inferences regarding the source situation. Next, Li’s attention was redirected to this
source situation so that his initial inference was re-triggered, and Li was guided to bring this
initial inference to bear vis-à-vis the artifacts he had created. Li was then first able to perceive
the artifact he had constructed as meaning his intuitive inference. Thus reconciling perceptual
constructions of a source phenomenon and its cultural reformulation, Li performed the essential
cognitive work relevant to reinventing the topical disciplinary notions. That is, the contingencies
that Li was impelled to articulate so as to align his immediate and mediated judgments were
couched in the form of the very mathematical rules underlying the targeted content. Just what it is
that Li experienced along the way, and how the instructional materials and interviewer contributed
to this experience, is the subject of this article.

SETTING THE MATHEMATICAL CONTEXT: A QUICK REFRESHER OF
CLASSICIST PROBABILITY

The mathematical content constituting the focus of this article is the treatment of a probability
situation roughly analogous to the experiment of flipping sets of four fair coins, where each coin
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SEMIOTIC LEAP 177

can land either on heads (H) or tails (T). The result of each of the singleton flips in a set of
four flips is considered an independent outcome, because it is not affected by the other three
flips in the set, and the collective result of four flips is called the compound-event outcome, for
example, the chance of getting “HTHT” is the contingent chance of getting H AND getting T
AND getting H AND getting T (providing we can monitor for order by pre-assigning the four
coins ordinal identities). We can think of this four-coin flipping phenomenon—its structure,
mechanism, and associated procedures—as a type of random generator, generally similar to dice
and spinners.The analysis of this four-flip random generator—that is, its combinatorial analysis—
identifies 16 unique and equiprobable compound outcomes: TTTT, TTTH, TTHT, THTT, HTTT,
TTHH, THTH, THHT, HTTH, HTHT, HHTT, HHHT, HHTH, HTHH, THHH, HHHH. These
discernable outcomes, which collectively constitute the sample space of the experiment, can be
classified into subsets according to their exact number of heads, yielding five aggregate events: no
heads, one head, two heads, three heads, and four heads, which contain 1, 4, 6, 4, and 1 elemental
events, respectively. This particular classification system is based on the idea of a combination, a
non-ordered set of independent outcomes, for example, “3H and 1T in any order,” and the variants
on each of the combinations are called its permutations, for example, the aggregate event “3H,
1T in any order” (hence, “3H, 1T”) has the four possible permutations “HHHT, HHTH, HTHH,
THHH.” According to the binomial theorem applied to the simple case of two equiprobable
values, H and T, an aggregate event’s expected likelihood is indicated by the proportional part
of its constituent elemental events within the sample space (attributed to Euclid, ∼300 B.C.E, in
Weisstein, 2008). Thus, for example, the aggregate event “2H, 2T,” which includes 6 of the 16
elemental events in the sample space (see earlier), is expected to occur in 6/16 of the experimental
trials with this random generator—more often than any of the other aggregate events.1

As the data will demonstrate, upon being asked to guess the most likely outcome in a concrete
situation roughly analogous to the four-coins experiment, students who are not familiar with the
above calculus nevertheless offer that “2 heads and 2 tails” would occur most frequently, relative
to each of the other aggregate events, albeit they initially cannot rationalize this prediction
mathematically. We shall also see that, whereas the experiment’s sample space is constituted

1I have chosen to describe the sample space as a collection of elemental events (TTTT, TTTH, TTHT, THTT, . . . .
HHHT, HHTH, HTHH, THHH, HHHH) parsed into a subsets of aggregate events (no-H, 1H, 2H, 3H, 4H) so as to eschew
common terminology confusions around the term “outcome,” which is often used for both theoretical and empirical
probability. Generally, there is much overlap and ambiguity, in mathematical and educational texts on probability, with
respect to the precise meanings of the terms “event,” “outcome,” etc., and these terminology challenges are related
to different epistemologies (i.e. classicist vs. frequentist probability). One concern is a confusion between potential
(theoretical) and actual (empirical) outcomes, and another is with regards to what an “event” encompasses within the
sample space. In fact, the ambiguity of outcomes is mathematical and not only psychological. Weisstein (2006) writes,
citing Papoulis (1984, pp. 24–25), “Experimental outcomes are not uniquely determined from the description of an
experiment, and must be agreed upon to avoid ambiguity.” My particular choice of the adjective “aggregate,” as opposed
to the more conventional “class,” “set,” or “group,” is an intentional nod to educational research on the cognition
and instruction of complex phenomena, wherein agent- and aggregate-based perceptual/conceptual frames play a key
role in understanding emergence—these perspectives have been implicated as instrumental in understanding natural
distributions, for example, the normal curve, as emerging from multiple instances of random agent-based interactions
(e.g., see Jacobson & Wilensky, 2006; Wilensky, 1997). Also, by using the same noun—“event”—for both the naı̈ve
and the expanded sample spaces, I am preparing lexical grounds for a claim that the naı̈ve sample space is as legitimate
as the mathematical sample space—they are contingent on different ways of seeing the random generator, and these
contingencies must be acknowledged, embraced, and leveraged in educational design.
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178 ABRAHAMSON

of 16 equiprobable elemental events, students’ intuitive inferences are couched in terms of
the five psychological objects corresponding to the five mathematical objects—the unexpanded
heteroprobable aggregate events. This difference between tacit perception and mathematical
formulation and its implications for learning disciplinary notions is intriguing for research on
cognition, yet it also bears questions for research on instruction. Namely, can students connect
their intuitive sense of relative likelihood with the calculus of probability despite a discrepancy
in how these two resources frame the experiment’s sample space? What obstacles might students
encounter and what work must they perform in order to connect (Wilensky, 1993, 1997) to
the calculus of probability? What design and facilitation responses might support students in
reconciling immediate and mediated inferences?

PEDAGOGICAL AND EPISTEMOLOGICAL ORIENTATIONS

This study—and specifically its investigative focus on relations between intuition and
mathematics—is aligned with the particular strain of constructivism whereby mathematical un-
derstanding is viewed as developing from naı̈ve intuitions that are persistent yet become qualified,
calibrated, refined, and reorganized, on the basis of feedback in diverse contexts, into the complex
cognitive structures that are manifest as mastery in a domain. Thus, perceived at an appropri-
ate granularity as deep-structure cognitive mechanisms, students’ intuitions are the very stuff
that educators should identify, embrace, and work with (Clement, Brown, & Zietsman, 1989;
Confrey, 1991; diSessa, 1988, 1993, 2008a; diSessa, Hammer, Sherin, & Kolpakowski, 1991;
diSessa & Minstrell, 1998; Smith, diSessa, & Roschelle, 1993; Wilensky, 1993, 1997). Accord-
ingly, the learning materials, activity sequence, and facilitation of the tutorial interview at the
core of this study as well as the analysis of data from the implementation of this interview
are all oriented toward treating mathematical learning as an individual’s negotiation of personal
quantitative schemata and the mediated operation of cognitive artifacts that evolved historically
to enhance these personal schemata (Abrahamson, 2004; Gelman, 1993; Greeno, 1998; Saxe
& Esmonde, 2005; Schliemann & Carraher, 2002; Sfard, 2002; Stetsenko, 2002; Stevens &
Hall, 1998).

A research program investigating routes to ground mathematical concepts in intuitive percep-
tions of problem-based situations is related historically to literature on insight, going back to
gestalt theory (e.g., Wertheimer, 1938) or even much further back to Aristotle’s De Anima (∼350
B.C.E.). In a related vein, the American semiotician Charles S. Peirce regarded the production
and elaboration of inscriptions, such as diagrams, as the essential activity of mathematical rea-
soning (see in, e.g., Bakker & Hoffmann, 2005; see also Rotman, 2000). Yet, more recently, many
researchers have pointed to the double-edged sword of perceptual intuition or, more broadly, em-
bodied perceptual simulation, in the solution of mathematical and other problems (Abrahamson,
Berland, Shapiro, Unterman, & Wilensky, 2006; Barsalou, 1999; Barwise & Etchemendy, 1991;
Brown, 1997; Cobb, 1989; Davis, 1993; Fauconnier & Turner, 2002; Fischbein, 1975, 1987;
Glenberg, 1997; Lakoff & Núñez, 2000; L. C. Martin, 2008; Pirie & Kieren, 1994; Schwartz
& Black, 1999; Sellarès & Toussaint, 2003). Namely, solution processes that largely depend on
perceptual organization of a problem space, for example, the various picture-based proofs for
the Pythagorean Theorem, may lend a strong sense of coherence—a synoptic view—to what
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SEMIOTIC LEAP 179

might otherwise remain a concatenation of propositions that are locally meaningful but globally
incoherent. Yet, these intuitive problem-solving processes might nevertheless delimit the scope
of possible solutions, which rigorous analysis would reveal, or introduce unfounded inferences,
which scrupulous exploration would preempt. Notwithstanding this potential tradeoff introduced
by engaging intuitive resources in working on problems, mathematicians appear to rely on a vari-
ety of undertheorized multimodal strategies and heuristics, in addition to symbolical formulations
(Arnheim, 1969; Fauconnier & Turner, 2002; Hadamard, 1945; Lakatos, 1976; Polya, 1945/1988;
Presmeg, 2006; Schoenfeld, 1985; Wilensky, 1991). Accordingly, this article treats imagistic rea-
soning as a commonplace, legitimate, and even necessary mechanism of mathematical problem
solving.

From this perspective, the very act of incorporating percepts into mathematical reasoning is
hardly too striking in and of itself. Rather, the research questions addressed herein are with regard
to the particular personal, interpersonal, and technological factors engendering this process and
how these factors might team so as to enable meaningful mathematical learning. Specifically, I
will examine how a cognitive artifact supports the merging of two gestalts—two vying perceptual
disambiguations of the artifact, which, I will propose, are complementary in the construction of
the targeted concept as framed by the activities of the particular design.

The artifact in question is the expanded sample space of a four-coin-like experiment, and
the vying disambiguations of this space pertain to its perceptual construction as a collection
either of 16 equiprobable elemental events or as five subsets of heteroprobable aggregate events.
An aggregate parsing of the sample space—that is, into the categories no-H, 1H, 2H, 3H, and
4H—undergirds the mathematical inference regarding the expected relative frequencies of these
five aggregate events—that is, an expectation of a 1:4:6:4:1 ratio, respectively. This analytic
quantitative inference could thus potentially enhance students’ intuitive qualitative inference,
which is based on perceptual judgment of structural–interactive properties of the random generator
in question, because that inference, too, would favor “2H, 2T” as the most probable event.
However, students may be reluctant to appreciate that the aggregate view of the experiment’s
sample space resonates with and enhances their intuitive analysis of the random generator,
because the expanded sample space includes additional elemental events—the permutations—
that may appear to the student as redundant and therefore arbitrarily imposed on the analytic
process. Namely, the student may wonder why on earth an instructor is bothering to include the
permutations in a listing of “things one could get,” when the student does not see the permutations
as contextually discernable from each other. Hence, the theoretical research question of how
students may ground a mathematical concept is cast in this study as a question of how students may
be guided to successfully negotiate tacit and mediated objectifications of phenomenal elements
in a mathematical concept’s situated embodiment.

An argument rising from this study is that, at least for a certain class of mathematical con-
structs, the mediated objectification of phenomena cannot directly articulate or elaborate their
tacit objectification—rather, students connect to mathematical concepts by synthesizing (Schön,
1981) the tacit and mediated (and see Fischbein, 1987, on “secondary intuition”). Such syn-
thesizing, I will demonstrate, transpires when students are guided to appropriate the mediated
objectification of a mathematical phenomenon as a semiotic means of warranting their tacit
judgment for that phenomenon. In particular, I will propose the construct semiotic leap to ex-
plain this process of synthesizing or connecting the phenomenal and the cultural as a form of
argumentation.
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180 ABRAHAMSON

UNDERSTANDING INTUITIONS OF LIKELIHOOD

Research on probability intuitions and their educational implications is by no means a recent
endeavor (for overviews, see Jones, Langrall, & Mooney, 2007; Shaughnessy, 1992). Specifically
for this study, it has been robustly demonstrated that people tend to expect that a coin flipped
four times will more likely land on “HHHT” than on “HHHH,” whereas the theory of probability
construes these outcome sequences as equiprobable (adapted from Kahneman, Slovic, & Tversky,
1982; Tversky & Kahneman, 1974). One plausible instructional response might be that such a
mathematically incorrect judgment should be eradicated and replaced, because it is inherently
flawed and thus could not possibly contribute toward a productive path for learning probability
(Cox & Mouw, 1992; Shaughnessy, 1977). Yet, in accordance with the work of diSessa and
collaborators cited earlier, I entertain an alternative response, namely that we should interpret
students’ “P(HHHT) > P(HHHH)” statements as resulting from a “legitimate reconstruction of
the problem” (Borovcnik & Bentz, 1991; Chernoff, 2009), and that we should therefore seek to
understand the intuitive mechanisms underlying students’ framing of the problem and explore
learning pathways that may work with these intuitive mechanisms, rather than against them (see
also Gigerenzer & Brighton, 2009).2

Several studies have explored students’ ability to generate the expanded sample space of
compound-event random generators, and these studies evaluated students’ combinatorial rea-
soning as unsystematic, noting that students neglect to discern among permutations on a given
combination (canonically, students do not see “2, 3” and “3, 2” as different rolls of a pair of dice;
see in Jones et al., 2007). For the most part, though, research studies that incorporate investiga-
tions of combinatorial reasoning do not appear to create opportunities for students to analyze,
build, and/or operate the random generator (but see Amit & Jan, 2007; Drier, 2000; Iversen &
Nilsson, 2007; Kazak & Confrey, 2007; Pratt, 2000; Wilensky, 1995, 1997). We are thus left with
the question of why people believe that “P(HHHT) > P(HHHH).”

Tversky and Kahneman (1974) have suggested that people perceive HHHT as more likely than
HHHH because HHHT—with its more balanced distribution of heads and tails—better captures
characteristic aspects of the random generator, that is, HHHT appears more representative of, or
better aligned with, structural properties of a fair coin that is equally likely to fall on heads and
tails. Indeed, Xu and Vashti (2008) have elicited responses analogous to “P(HHHT) > P(HHHH)”
from 8-month-old infants. This early or perhaps innate nature of the tendency to draw a “P(HHHT)
> P(HHHH)” judgment may explain why the intuition is so robust and durable. But still, what
is the epistemological nature of this intuition, and, therefore, how might we conceptualize this
mathematically false intuition with respect to a program aimed at improving the teaching of
probability?

Intuitions of the “P(HHHT) > P(HHHH)” type, which appear to govern humans’ natural
filtering and construction of perceptual information, have been termed enabling constraints
(Gelman & Williams, 1998, pp. 600–601):

2There is no broad agreement over the precise semantics of “intuition” (e.g., whether it is fixed or can develop). For
example, Fischbein (1987) maintains that whereas “primary intuitions” are stable, “secondary intuitions” can develop with
learning, such that initially fragmented or counterintuitive situations may become patterned schemes of expert practice
(see also Dreyfus & Dreyfus, 1986, 1999). Interestingly, such learned skills are colloquially termed “second nature.”
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SEMIOTIC LEAP 181

Enabling constraints embodied in mental structure that support core domains . . . . selectively guide
the learner’s attention to relevant inputs, and they selectively guide the learner’s interpretations
of those inputs toward accurate and adaptively useful ends. . . . The evolutionary history of our
species has made us good learners in certain problem-relevant areas and poor learners in other areas.
In general, learning in a noncore domain can be either facilitated or hindered by the degree to
which it is consistent or inconsistent with a core learning mechanism that has evolved to selectively
expect particular types of structure information (my italics. See also Gigerenzer, 1998; Zhu &
Gigerenzer, 2006, on “ecological intelligence” and its implications for the representation of statistical
information).

Humans, thus, appear to be “hard wired” with innate/early cognitive mechanisms governing
perception. This assumption is helpful in explaining the “representativeness heuristic” (Tversky
& Kahneman, 1974). Specifically, I propose, the intuitive expectation of structure information
that frames the “P(HHHT) > P(HHHH)” judgment is callous to the linear–sequential order
of outcomes (the placement of individual H and T within the four-outcome strings). Namely,
the enabling constraint underlying our judgment of outcome frequency appears to privilege the
number of occurrences of the binomial values H and T (or the ratio of Hs to Ts) at the expense of
attention to their order, thus encoding “HHHT” as “3H, 1T.” That is, attending to order within a
collection of independent outcomes was not ecologically adaptive and therefore never developed
as an enabling constraint or primary intuition. Therefore, a person who judges that “P(HHHT)
> P(HHHH)” has interpreted the question in a manner that is at odds with the meaning intended
by the author of the question—as though the author has asked them to compare the likelihood
of “3H, 1T” and “4H.” Moreover, the person is in fact giving a correct answer to a different
question, because “3H, 1T” is indeed more likely that “4H”—it is in fact four times as likely
(compare the four possible outcome sequences with exactly three heads—HHHT, HHTH, HTHH,
THHH—with the single possible outcome sequence that has four heads, HHHH). Thus, if we do
not attend to the order of independent outcomes in the two sequences, then it is subjectively true
that “P(HHHT) > P(HHHH).”

Given the previously conjectured diagnosis, how should we go about helping students attend
to the order of independent outcomes?3 Plausibly, we might begin by emphasizing this property
of order perceptually. As we shall encounter in the data analysis section of this article, however,
making salient an implicit property of a mathematical artifact is complicated by the learner’s

3I am by no means claiming that students cannot in principle attend to order. (Indeed, Tversky and Kahneman also
documented assertions of type “P(HTHT) > P(HHTT)” that treat two different permutations on “2H, 2T.” However,
note that this comparison item makes the property of order salient because order is the only parameter distinguishing
the two sequences—a pragmatic framing suggesting that the items are at least nominally distinct along the dimension
of order and that this distinction is somehow meaningful to the task at hand. Also, note that the notion of “sequence” is
not necessarily salient in a string of four symbols, such as “HHHT,” if one is not privy to the process that is captured
in the inscription (e.g., a temporal series of four coin flips). In like vein, when four coins are flipped simultaneously,
the notion of order is complicated—order is rarely a spatial feature of the coins themselves and is, instead, an analytic
construct.) Rather, I am suggesting that students do not attend to order because they do not conceptualize that property of
the symbol sequence as relevant to the task of determining relative likelihoods, just as, say, one might not know to rap on
a watermelon to hear if it is ripe—attending to this acoustic property of watermelons is not part of what Goodwin (1994)
calls one’s professional vision of this domain of scrutiny. Indeed, what people see when they look at objects is greatly
contingent on the context and goals of their perceptual activity. This idea is probably self-evident and is certainly a tenet
of phenomenology philosophy (e.g., Heidegger, 1962), but see, for example, Shinoda, Hayoe, and Srivastava (2001) for
an overview of half a century of cognitive-science empirical studies relevant to this idea of goal-based selective attention.
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182 ABRAHAMSON

intuitive ontology for the phenomenon that is being modeled, such that the learner’s construction
of the situation may still differ from the construction that the designer and facilitator are attempting
to mediate through the artifact and activities. Indeed, as we shall see, even introducing into
the random generator itself structural elements that might scaffold attention to the order of
independent outcomes will prove pedagogically ineffective as long as students do not appreciate
that, how, and why the order is relevant to the task with which they are charged. Thus, to iterate our
focal question from the intersecting perspectives of sociocultural and cognitive theory, I ask: How
might teachers highlight and code (Goodwin, 1994) order as essential to the task of comparing
likelihoods, when students are intuitively disinclined to attend to let alone interpret (Gelman &
Williams, 1998) order as pertinent to the task?

As I shall explain later in the article, a constructivist approach that distinguishes between tacit
and cultural foundations of individual knowledge implies that educational design should create
opportunities that both trigger tacit responses and help students coordinate these responses with
relevant mathematical formulations, a process that diSessa (1993) describes as the bootstrapping
of content triggered by top-down systemic coherence.4 Therefore, the design utilized in this study
guided students from the phenomenal to the semiotic, and the study focuses on the impediments
germane to this learning path from intuition to inscription. Specifically for the focal topic of bino-
mial expansion, the meta-design decision to depart from the phenomenal implied that students’
naı̈ve sample space (5 events) would be invoked prior to having them engage in constructing the
formal sample space (16 elemental events, cf. Shaughnessy, 1977).

Granted, students can certainly learn the principle and procedure of expanding the full sample
space from the naı̈ve one, but they may not initially recognize that such expansion results in a
structure that provides ready tools for warranting their intuitive sense of likelihood distribution.
That is, students may work with the naı̈ve sample space oblivious to the fact that each element
can be expanded, let alone that such expansion would generate vital information for determining
the expected distribution of frequency. Thus, the design problem becomes how to enable students
to see the mathematical sample space as resonating with, and enhancing, their naı̈ve expectations
of distribution.

RESEARCH QUESTIONS

The epistemological conjecture underlying the rationale of this study is that students’ “P(HHHT)
> P(HHHH)” assertion, although mathematically incorrect, points to cognitive resources that
could potentially be incorporated effectively into correct mathematical reasoning. That is, albeit
the assertion is prima facie discordant with normative knowledge, some deep-structure cognitive
mechanism that is agentive in generating this assertion could constitute one “piece” of what
may become a “knowledge in pieces” that is aligned with probability theory. What, then, would

4“Top-down coherence: Symbolic and verbal propositions are prominent in instruction. It is possible to view these as
being learned prior to the broader coordinations in intuitive knowledge that are eventually required. . . . The subtleties and
reliability of top-down coherence generation as a developmental principle are important to understand. Most schooling
seems to count heavily on explicitly and literally rememberable elements. My working assumption is that this only works
well within subsystems that already involve a sufficiently rich and reliable network. . . . I would like the theory sketch
developed here to be capable of expressing the difficulties in top-down development” (diSessa, 1993, pp. 115–116).
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SEMIOTIC LEAP 183

the other pieces be? What experiences, such as guided interactions with learning tools, might
support students in coordinating all these pieces into a cognitive structure supporting the targeted
knowledge? Approaching this study, I thus asked:

� What pedagogical resources, including mathematical problem situations, activities, semiotic
tools, and mediation strategies, might enable learners to build on their intuitive sense of
likelihood en route to understanding how attention to the order of independent-event outcomes
complements and enhances this intuition?

� More broadly, what roles do artifacts play in the course of students’ guided coordination of
intuitive resources and newly introduced mathematical procedures?

� To what extent are mathematical symbols, such as numerals and operations, indispensable
prerequisite tools for learners to construct meaning for the target mathematical content of
sample space? Can students reconcile intuitive and mathematical knowledge through using
non-numerical tools, such as a sample space consisting of set of iconic representations of the
random outcomes?

The Methods section introduces the design of this study and then reformulates the aforementioned
research questions in terms of this specific design. The subsequent section presents the case study,
which treats the focal empirical data examined in this article. I conclude by developing a new
construct, semiotic leap, with which I attempt to capture the nature of what I believe to be a central
mechanism at play in students’ guided learning of a certain class of mathematical constructs.

Briefly, a semiotic leap is a student’s insightful appropriation of a cultural artifact as a means
of warranting an intuitive inference based on perceptual judgment of quantitative properties in
a phenomenal embodiment of a targeted concept. The leap thus bridges from the tacit to the
semiotic. The pedagogical challenge underlying this and other research studies in mathematics
education can now be defined as the teacher’s need to orchestrate the vying agents of conceptual
understanding: on the one hand, a student comes in to the lesson with robust intuitive framings
and associated inference-making mechanisms for privileged domains, yet on the other hand these
inferences cannot directly support an appropriation of the mathematical analytic formulations
of the phenomena in question. The case study reported in this article is an example of how a
tutor and student achieved a critical milestone in connecting from the tacit to the semiotic in the
mathematical disciplinary content of binomial distribution.

METHODS: IMPLEMENTING AN EXPERIMENTAL INSTRUCTIONAL
DESIGN SO AS TO CREATE AN EMPIRICAL CONTEXT FOR

INVESTIGATING RELATIONS BETWEEN TACIT KNOWLEDGE AND
SEMIOTIC FORMULATION

This study is part of a larger research project, Seeing Chance, which explores middle-school
students’ intuitions of probability as well as the potential of a set of mixed-media mathemat-
ical objects designed so as to support the learning of probability through a process in which
students build on their intuitions and are guided toward meaningful construction of the targeted
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184 ABRAHAMSON

mathematical concepts.5 These dual foci of the project—describing learners’ intuitions and
designing artifacts conjectured to breach the gap between those intuitions and the targeted mathe-
matical ideas—suggested design-based research as a potentially effective approach for addressing
the research questions (e.g., Collins, Joseph, & Bielaczyc, 2004; Confrey, 2005). Thus, over a
developmental research spiral of design–implement–analyze cycles, we have been crafting ob-
jects and planning activities envisioned to enable students to tap and assert their intuitive sense
of likelihood, reflect on the implications of these intuitive inferences, and explore the relations of
these intuitive inferences to mathematical concepts and procedures. Simultaneously, we have been
seeking ontological innovation (diSessa & Cobb, 2004)—hypothetical constructs that researchers
formulate on the basis of data analyses and put forth so as to illuminate the nature of phenom-
ena observed in teaching and learning situations. For example, the construct of semiotic leap
introduced in this article is an ontological innovation that emerged from a design-based research
study.

Design Rationale6

The topic of probability appeared to be an appropriate choice for a study of relations between
intuition and content, due to a literature describing the would-be counterintuitive nature of proba-
bility, even among experts (Kahneman et al., 1982; Wilensky, 1997).7 Furthermore, the particular
instructional design developed for this project turned out to be inadvertently auspicious for ex-
ploring the emergent research questions guiding the current study (see diSessa & Cobb, 2004,
on empirical data from educational research as points of departure for new “post facto” studies).
Namely, the activity sequence implemented in this study was such that, against the background of
students’ actions and utterances, the juxtaposition of naı̈ve intuition and mathematical procedures
was brought out in stark relief, perhaps more so than in traditional activities that aim to create
opportunities for students to build on their intuitions, as the following explanation of the design
will demonstrate (see an elaboration in Abrahamson & White, 2008).

The randomness process created for this study was designed to trigger the same cognitive
mechanisms that I hypothesized underlie students’ “P(HHHT) > P(HHHH)” belief, yet I sought
to create a process that would empower students to avail of this belief in addressing a mathematical
problem. I thus aimed for a situation sufficiently analogous to the four-coin situation, yet one
in which ignoring the order of independent outcomes would not undermine an alignment with

5Initial results appear in Abrahamson and Cendak (2006), implications for learning theory appear in Abrahamson
(2008a, 2009b), and implications for design-based research methodology appear in Abrahamson and Wilensky (2007),
Abrahamson and White (2008), and Abrahamson (2009a).

6It would be outside the focus of this article to survey the wealth of prior constructivist design for probability learning.
Here, the design is taken mainly as setting the context for data analysis. Also, the learning activities that are the focus of
this study are only the first of several activities in the full sequence that also includes computer-based interactive modules,
all part of the ProbLab experimental unit (Abrahamson, 2009a, Abrahamson, Janusz, & Wilensky, 2006; Abrahamson &
Wilensky, 2002, 2004a, 2005).

7The difficulty that probability concepts present to learners, and therefore its aptness for a study of intuition and
learning, is perhaps augured by the tumultuous history of this mathematical topic, which was fraught with resistances
from unlikely quarters going far beyond lay people’s naı̈ve beliefs and including religious authorities (e.g., Hacking,
1975).
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SEMIOTIC LEAP 185

mathematical theory. Specifically, I sought a situation and activity sequence in which students
would initially assert that “P(3H, 1T) > P(4H)”—a mathematically correct statement—and
subsequently view the combinatorial-analysis procedure as providing a mathematical warrant for
this assertion. In particular, I aimed for a design that would ultimately engender the insightful
proposition that, “‘P(3H, 1T) > P(4H),’ because there are more ways of getting ‘3H, 1T’ than
there are of getting ‘4H.”’

I anticipated that students would face challenges in coordinating and reconciling two legitimate
views of the sample space: (a) an intuition-based view consisting of five possible objects, “4T”;
“1H, 3T”; “2H, 2T”; “3H, 1T”; “4H” (the five aggregate events); and (b) a mathematical view that
expands these five objects into 1, 4, 6, 4, and 1 object(s), respectively, for a total of 16 objects (the
elemental events). I aimed for students to ground fundamental notions of classicist probability by
bringing to bear these two views of the sample space, considering each as viable, and therefore
attempting to reconcile them (see Abrahamson, 2006a; Abrahamson & Wilensky, 2007, for an
explication of the framework underlying this type of design). I now introduce the actual materials
and procedures we designed.

Learning Tools

The marbles box (see Figure 1) contains a mixture of hundreds of marbles of two colors, with
equal numbers of each color (green and blue), and the marbles scooper is a utensil for drawing
out of this box samples of exactly four marbles.8 The marbles box and scooper thus constitute
a random generator of type “urn” or “bag,” a mathematical artifact that is widely used and/or
referred to in probability literature, only that: (a) the marbles box is an open urn, so that the color
ratios are exposed for perceptual inspection; and (b) the scooper’s structural properties impose
constraints on the possible spatial configuration of the independent outcomes.9 I assumed that
affixing the locations of the independent outcomes might create opportunities for a student and
facilitator to co-attend to the phenomenal property of order as a potentially meaningful parameter

8In this study, there were equal numbers of marbles of each of the two colors. The rationale was to begin the
instructional sequence with the case in which it is equally likely to draw a marble of each color (p = .5), so that all 16
compound events are equiprobable (see also Falk & Lann, 2008). This scaffold would subsequently be removed, at which
point the equiprobability would need to be qualified as obtaining only within aggregate-event classes—not between them
(Abrahamson, 2009a).

9The scooper’s spatial template is an indigenous–structural format for inscribing the outcomes, similar to the left-to-
right order of independent events in Vegas-style fruit machines. In the case of coin flipping, however, one must apply
an exogenous–analytic format. Note that the “HHTH” left-to-right linear textual inscription commonly used to designate
discernable compound-event outcomes does not directly translate spatial/physical features of the actual coin-flipping
experiment. Rather, the spatial configuration of the actual four flipped coins that have landed on a desk is a necessary,
if prosaic, mechanical feature of this random generator that is irrelevant for our current probability analyses. Finally,
note that, strictly speaking, the marbles-box experiment is only a hypergeometric approximation of the binomial. That
is, a single scoop is in fact the result of four dependent without-replacement trials and so is not precisely commensurate
with the concurrent flipping of four independent coins or a sequence of four coin flips. Thus, the true expected outcome
distribution from the experiment has lower variance than the binomial distribution (e.g., it is even more difficult to draw
a 4H scoop than in a truly with-replacement experiment). That said, the ratio of the scooper sample size (4) to the
population (hundreds of marbles) renders this issue practically negligible for the purposes of simulating the binomial.
Also, our computer modules implement truly binomial experiments. Henceforth in this article, I shall treat the marbles-box
experiment as though it were truly binomial.
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186 ABRAHAMSON

FIGURE 1 A 2-by-2 marbles scooper—a utensil for drawing out ordered samples—displaying a sample drawn
out of a box full of marbles of two colors.

in the problem space, that is, as bearing on the question of anticipated outcome distribution.
Moreover, the built-in 2-by-2 configuration could serve as a ready template for creating the set of
“what we could get” (the sample space). As a means to further scaffold students in constructing
the complete sample space of the marbles-scooping experiment, we provided the students with an
ample stock of cards, each bearing an empty 2-by-2 matrix (see Figure 2) as well as two crayons
(green and blue). Furthermore, we marked one edge of the matrix with a thicker line, as a means
of cueing the idea that a rotation permutation might be interpreted as a discernable outcome. Yet,
as we will see in the data, participants actually attended to this order only when they perceived
that doing so served a goal, namely, either when the interviewer explicitly instructed a participant
to attend to order or when the participant inferred that doing so might support the pragmatic
objective of warranting an earlier assertion pertaining to the expected outcome distribution in the
marbles-scooping experiment.

Participant and Procedure

Li, a sixth-grade student (aged 11.5), was one of 28 Grade 4–6 participants, selected from a pool
of 46 volunteers, in a study conducted at a suburban school in the San Francisco East Bay area
(Abrahamson & Cendak, 2006). Li, who was rated by his mathematics teachers as a high achiever,
was loquacious, articulate, and argumentative. His generally engaged disposition throughout the
interview as well as the contents of his observations were not atypical with respect to the majority
of participants in this study, yet Li’s comfort and confidence in expressing his beliefs, even as
these were shifting, were especially illuminating of the reasoning processes that possibly underlie
most participants’ assertions and actions. Li’s disposition is therefore helpful for the current
expository objective of presenting and explicating the participants’ assumed trajectories—their
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SEMIOTIC LEAP 187

FIGURE 2 A card for constructing the sample space of the marbles-scooping experiment (a stack of these is
provided).

“hypothetical genetic learning paths” (diSessa et al., 1991)—through the interaction (see also
Simon & Tzur, 2004, on “hypothetical learning trajectories”). Crucially, the interview protocol
by-and-large led all the participants to comparable milestones along their respective learning
paths, albeit we witnessed natural variability in the particular order, duration, and frequency of
the dyad’s occasions at each of these milestones. In any case, the objective of this article is not
so much to offer empirically incontestable generalizations for what an educator might expect
when implementing this imperfect design with Grade 4–6 students, but rather to richly describe
one case study that we view as epitomizing a need, within the learning sciences, to persist in
developing comprehensive theoretical models of mathematical learning that are geared to embrace
a constructivist pedagogical program (for further descriptions of individual students’ experiences
in this activity sequence, see Abrahamson, 2007a; Abrahamson, 2007b, 2009a; Abrahamson,
Bryant, Howison, & Relaford-Doyle, 2008).

The study consisted of conducting a one-to-one semi-structured clinical interview, which
implemented a prepared protocol that included activities and questions as well as follow-up
questions, which had been anticipated through earlier pilot studies and were selected in real time
as contingent on students’ responses (diSessa, 2007; Ginsburg, 1997). Li’s interview took place
in a quiet room on the school premises, and the interviewer was the author. The duration of Li’s
total interview, including the computer-based activities, was 55 minutes, but this study focuses
only on the first 25 minutes that included work with the marbles box and the sample space. The
protocol for these first two activities was as follows.

In the first activity, we present the marbles-scooping equipment, demonstrate its mechanism
by letting the student scoop several times, and explain that scoops should contain exactly four
marbles. We then ask the participant, “What do you think will happen when I scoop?” (or, “What
might one get when one scoops?”). The question is intentionally ambiguous along at least three
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188 ABRAHAMSON

dimensions: (a) possible versus probable—a legitimate construction of the question is that it refers
only to what we might get, not how often we will get it; (b) one sample versus numerous samples—
we do not specify whether we would scoop only once or many times; and (c) combinations versus
permutations—we do not specify whether we are attending only to the number of green and
blue marbles in each scoop (the “five-objects view”) or to their spatial configuration as well
(the “sixteen-objects view”). If participants interpret the question as referring to a single sample,
we discuss the point with them, so as to elicit their reasoning, and then ask them to consider the
alternative, many-scoop meaning (see also Konold, 1989). Once participants offer a response, we
ask them to explain their reasoning.

In the second activity, we present participants the cards and crayons and ask them to color in
“all the different scoops we could get.” If necessary, we clarify that we do not mean for them to
conduct a real experiment in which they would use the cards to record actual scoops but rather
to create the entire collection of scoops that one could possibly receive if one were indeed to
conduct an experiment. If, while building the sample space, the participant creates any less than
the total of 16 outcomes, we probe the participant to understand why and then prompt him/her to
construct the entire sample space.

Finally, the interviewer guides the participant to assemble the sample space into a combinations
tower, a histogram-shaped structure, here constituted of 16 discrete units set in five columns
(see Figure 3a). Note the exterior contour of the combinations tower—it is the same as the
contour of a 1:4:6:4:1 histogram (see Figure 3b). Indeed, outcome distributions in actual/simulated
experiments with the marbles box are expected to converge toward the shape of the combinations
tower, as more and more samples are drawn (Abrahamson, 2006b).

Note that we do not ever tell the students explicitly that the combinatorial-analysis procedure
and, in particular, its product, the sample space assembled as the combinations tower, would
possibly serve us in any way beyond showing us “what we can get.” That is, we do not explicitly
communicate to participants any potential connections between the two activities—guessing
an outcome distribution in a hypothetical experiment with a random generator and building its
sample space.10 However, in an attempt to motivate students implicitly toward seeking connections
between these activities, we manipulated the pragmatics of the dialogue (Grice, 1989; Schegloff,
1996) as well as its socio-mathematical norms (Cobb, 2005; Cobb & Bauersfeld, 1995; Ernest,
1988), so that once participants have offered an intuitive inference they would feel inclined to
seek a means of defending the inference. Also note that, due to the objectives of this particular
study, we consciously “funnel” the students (Voigt, 1995) toward ultimately constructing the
entire sample space and assembling it in the form of the combinations tower. At the end of the
interview, however, we revisit and discuss with the participant all these “arbitrary” directives.
As the data analysis will demonstrate, this somewhat unusual activity-sequence design created
for the interviewer valuable opportunities to elicit and track milestones in students’ evolving
reasoning (Abrahamson & White, 2008).

10The two activities can be further contrasted. In the first activity, participants are asked to cast a judgment about a
specified property of an available object, but they are not told how to go about making this judgment. In the second
activity, participants are guided to build and assemble an initially unavailable object, but they are not told why they are
engaged in this activity or what they are to do with its product.
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SEMIOTIC LEAP 189

FIGURE 3 (a). The combinations tower—a sample space assembled in the form of a “bar chart.” (b). An actual
outcome distribution in a computer-based simulated experiment of the marbles-box random generator.
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190 ABRAHAMSON

Data Collection and Analysis

The Li interview is one of 28 that were all audio/videotaped for subsequent analysis. We worked in
the traditions of collaborative microgenetic analysis (Schoenfeld, Smith, & Arcavi, 1991; Siegler
& Crowley, 1991) and grounded theory (Glaser & Strauss, 1967). Members of the research
team familiarized themselves thoroughly with all 28 videotapes, and during meetings we each
presented and discussed video excerpts and accompanying transcriptions that appeared to shed
light on the emerging research questions, which we progressively honed. Observations that were
generally vetted as pertinent to these research questions led to investigations for similar patterns
in the data corpus; wherever we detected a pattern that we could not explain in terms of our
knowledge of the literature, we considered the pattern temporarily as an ontological innovation
and made it a focus of our subsequent analyses, readings, and discussions.11

Thus, Li is but one of several students whose data we have been examining closely. In the
following discussion of the Li case study, I will occasionally draw on results from analyses of the
entire corpus of data.

An Activity Design Serving a Set of Emergent Research Questions

Having presented the materials and procedure used in the interview, I am now in a position to
recontextualize and focus the research questions of this study, as follows:

� How will Li warrant his intuitive judgment of anticipated outcome frequencies?
� Specifically, will Li come to realize that the combinations tower can serve as a means of

supporting his initial judgment? Namely, will he come to use the 16 elemental events to
express intuited properties of the five aggregate events?

� If so, what personal, interpersonal, and technological resources might support Li in building
this mathematical argument?

� What is the nature of any difficulties Li may encounter en route to connecting tacit and semiotic
aspects of this argument?

� What is the nature and content of any further realizations that Li has yet to achieve so as to
solidify his understanding of binomial distribution?

ANALYSIS OF A CASE STUDY: THE VICISSITUDES OF CONNECTING
IMMEDIATE AND MEDIATED INFERENCES

This article reports on a study that investigated the nature and interactions of personal, material,
and facilitation resources that enable students to productively engage their intuition in learning

11The data analysis process has bootstrapped our research group into expanding our reading of cognitive science,
sociocultural theory, cognitive- and cultural semiotics, pragmatics, philosophy, design-based research methodology, and
critical theory. The caveat of making sense of the data impelled us to consider how these additional resources, which each
introduced cogent perspectives, could possibly be integrated into the evolving model of guided tool-based learning. As
one result of this collaborative process, we published on the potential efficacy of this theory integration (Abrahamson,
2008a; Abrahamson et al., 2008; Abrahamson & White, 2008). As a second result, I am developing a graduate seminar
that uses the Seeing Chance data as a fulcrum for a survey of learning-sciences literature.
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SEMIOTIC LEAP 191

to perform mathematical procedures with understanding. In this section, I present an interpretive
description of one case-study interview. The narrative density varies across the 25-minute episode
analyzed, because I have chosen to zoom in on several moments that I view as pivotal for
addressing the research questions.

An Initial Aggregate-Event-Based Intuitive Sense of Likelihood

I show Li the marbles box and ask him to guess what we will be doing with it. He says the box
may be related to fractions, and specifically to the ratio of green marbles to blue marbles. He
guesses that the ratio is about 60:40, respectively. I stir the contents of the box several times,
so as to modify the observed distribution of color, and Li adjusts his guess to 50:50. I confirm
that 50:50 is the correct ratio. I then introduce the scooper, and Li guesses that it is a utensil
for holding marbles. I demonstrate the scooping action and, so doing, I happen to draw out a “1
green, 3 blue” sample (hence “1g, 3b” or just “1g3b,” i.e., an outcome or sample corresponding
to compound events that are any of the four permutations on the combination “1 green and 3 blue
marbles in any order”). Next, Li tries this action himself, and gets a 2g2b sample. The following
conversation then ensues:

Dor: What might one get when one does that?
Li: Any . . . Up to four . . . What do you mean?

Dor: Yeah. Like that’s . . . kinda tell me more about that.
Li: Either four of one, none of the other; three of one and one of the other; two and two; one

and three.
Dor: Do you have any . . . I donno . . . like, expectation as to what you might get?

Li: Knowing that there’s an equal amounts of marbles, the chance is probably that you’ll get
two and two.

Li, similarly to the other 27 students we interviewed, predicts 2g2b as the most likely event. So
doing, it appears, the students draw a population-to-sample inference.12 Note, however, that Li
never appears to attend to particular arrangements of marbles within the scooper—only to the
numbers of green and blue marbles. Thus, in enumerating what one might get and stating what the
chances are, Li is construing the experimental samples as aggregate-, not elemental events, albeit
subsequent exchanges suggest that as yet Li is oblivious to this aggregate/elemental distinction.
In passing, note also that Li has designated only four events (he omitted the “none and four”
category). Let us look closer at the aforementioned exchange, because, as I explain later, it holds
a key for understanding the remainder of this interview.

12Tversky and Kahneman’s “representativeness heuristic” was originally articulated to explain how people judge an
outcome presented in the absence of the random generator that produced it. In our design, conversely, the participants are
asked to guess an outcome in the presence of the random generator. Nevertheless, I submit that these two decision-making
processes both involve object-to-sample inferences, because I assume that some mental imagery and simulation are
involved in each of them (cf. Xu & Vashti, 2008, in which both the population and the sample are displayed).
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192 ABRAHAMSON

The Volatility of Tacit Knowledge Amid the Intrusion of Semiotic Media

When one first analyzes the aforementioned transcription, one might interpret the probes for what
one might get and what one expects to get as alternative linguistic formulations of the interviewer’s
single intent that Li communicate his intuitive inferences with respect to properties of the random
generator and specifically its expected outcomes. Indeed, from the perspective of mathematical
theory, the interviewer’s prompts might be regarded as commensurate, because knowing what
we might get (the possible) anticipates knowing what we expect to get (the probable)—these
knowings are of similar ontological status as phases in the analytic process. However, Li has
neither psychological insight into the interviewer’s intentions nor mathematical hindsight into
probability theory—he is doing his best to respond sensibly to the prompts as they arrive. In
so doing, I believe, Li draws on two very different types of resources. Namely, he applies: (a)
analytical reasoning when he enumerates the possible outcomes sequentially, focusing on the
structure of the scooper and the color types in the box; and (b) tacit judgment—a population-to-
sample inference—when he selects 2g2b as the most likely event, focusing on the structure of
the scooper vis-à-vis the color ratios in the box.

These analytic and tacit resources were both immediately available to Li, yet—as the sub-
sequent transcriptions will demonstrate—Li cannot readily reconcile inferences emerging from
these complementary resources. Namely, it is hardly obvious how an enumeration of all the
possible aggregate events, which prima facie does not appear to privilege any particular one of
them, might agree with a sense as to the most likely of these events. In fact, this brief transcription
heralds the thematic challenge of reconciling inferences from these two ostensibly competing
resources—a challenge Li is about to experience throughout the episode in question. In what
follows, I will be interpreting this challenge as a pedagogically necessary perturbation to Li’s
tacit knowledge: by engaging in activities that utilize the cultural tools of combinatorial analysis,
Li will soon experience cognitive conflict between inferences from “intuitive math” and “school
math” (cf. Prediger, 2008). Li will initially resolve this conflict by revoking his intuitive inference,
and only toward the end of the episode will the dyad negotiate a resolution by which Li can begin
to regard his tacit and analytic resources as valuable and compatible. We now continue with a
narrative of the interview.

I ask Li to clarify what he means by “chance,” and Li, after some thought, says that if we were
to scoop all of the marbles out of the box and lay out these scoops before us, the “average” number
of green and blue marbles in these samples would be 2g2b. In response, I pose for Li a variant on
his hypothetical experiment—a with-replacement scenario, in which each four-marbles sample
is returned to the box after it is drawn out—and Li says that the chances would be consistent at
each scoop. Both of these responses are mathematically correct in and of themselves—if roughly
worded—yet neither, at least when considered verbatim, appears to support Li’s initial statement
that “the chance is probably that you’ll get two and two.” In fact, as the next excerpt demonstrates,
even as he engages in producing what should constitute mathematical supports for his intuitive
judgment that 2g2b has the greater chance, Li paradoxically loses faith in this very inference.
I will interpret this apparent contradiction as the result of a reflexive process of distributed
problem solving, in which Li’s initially unfluent engagement of the available expressive media
fails to sustain his intuitive inference and, instead, impels him toward an alternative conclusion
that is incompatible with that intuitive inference. As such, Li’s learning process is emblematic
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SEMIOTIC LEAP 193

of ontogenetic development in the social milieu, wherein individuals laboriously appropriate
cultural tools that initially hamper their native instincts yet eventually enhance these capacities
(see also Stavy & Strauss, 1982, on U-shaped growth).

I ask Li to explain his reasoning. Li offers an unsystematic combinatorial analysis, and then
the following exchange ensues, in which he yet again miscounts the events:

Dor: So, when you say that “the chances that you’ll get two and two . . . ” What are the chances?
I mean, wh . . . wh . . . or. . .

Li: What their . . . I think there’re eight possibilities in total. No, there’re seven . . . possibilities.
Dor: Possibilities of what?

Li: Of the different colors you could get in this [scooper].
Dor: Ok.

Li: So, you scoop it, and you could have: no blues and four greens, one blue and three greens,
two blues and two greens, three blues and one green, and four blues and no green. . . . And
then you could have no greens and four blues, one green and three blues, and two greens
and two blues, which is one of the . . . uhhm, and three greens and one blue, and four greens
and no blues.

Subsequently, and although he had just enumerated 10 events (twice five, enumerated in opposite
directions), Li concludes that there are seven possible events [sic]. Regardless of the miscount, Li
then infers that the chance of getting 2g2b is one-in-seven. Thus, through attempting to support
his initial intuition that 2g2b has the greater chance, Li arrives at a contradictory conclusion that
the aggregate events are equiprobable. Clearly, Li does not see the property of internal order as
pertinent to combinatorial analysis, and therefore he cannot construct an analytic counterpart to
his intuitive inference. Still, the quick transition in Li’s expectation, from a varied distribution
to a flat distribution, suggests that by engaging the process of generating the possible events, Li
created new mental objects that, in turn, collectively offered him new inferences that were at odds
with his initial inference. Li’s conclusion is reminiscent of LeCoutre (1992), who reported on
cases in which participants claimed that by virtue of being random, all experimental outcomes
are perforce equally likely (an equiprobability bias; see also Falk & Lann, 2008). However, Li
never makes such claims explicit. In the next section, I will be offering an alternative explanation
for the “loss of variance” in Li’s anticipated outcome distribution.

Li has been engaged in cognitively demanding analysis. Material media supporting him in
this task were the marbles scooper as well as his fingers, but he was not supported by any media
geared to enable a recording of his reasoning and thus a reviewing of his combinatorial analysis,
and so he was prone to error, such as double counting 1g3b and 3b1g. We now skip slightly
forward to a point in the combinatorial-analysis activity when into Li’s working environment
are introduced the 2-by-2 cards—material objects that improve his organization of the analysis,
resulting in a sample space of only five objects.

Implicit Imposition of Conceptual Categories: A Perennial Pedagogical Dilemma

I produce the cards and crayons, laying them on the desk, and ask Li to use these materials so as
to show “what we could get when we scoop.” I point out that the 2-by-2 matrix in the cards has
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194 ABRAHAMSON

FIGURE 4 From left: Li completes his combinatorial analysis; reconstruction of Li’s five-event sample space.

one thicker border that should be taken to indicate its upright orientation. Li takes a total of five
cards from the stack, places them in front of him, and rapidly creates a sample space that includes
cards with exactly 0, 1, 2, 3, and 4 green squares, respectively (the other squares are blue; see
Figure 4). As he is completing this task, I re-indicate for Li the thicker border he apparently had
not been attending to, and Li responds by rotating the cards such that they are each oriented with
the thick line above. Li stares at the five cards for a few seconds and says, “I think that’s it. Yeah”
(see Figure 4).

The Reinvention of Permutations. Meaning to probe for whether Li indeed sees the
collection of five cards he has produced as exhausting the possible outcomes, I initiate the
following exchange, in which the property of order (“placement”) first emerges in our conversation
(cf. “colors”) but is judged by Li as irrelevant to the task, as he perceives it. Concurrently, the
objective of the combinatorial-analysis task is first enunciated as constituting an inquiry into the
anticipated frequencies.

Dor: So, are you saying that if I . . . If I . . . If I took, uhhhm, samples now, like, will. . .
Li: The chance that you got two-and-two would be one-out-of-five.

Dor: Oh I see, but . . . Whatever I get, am I bound to get one of these [five] now, when I scoop?
Li: Yeah, I think so. Oh! With the placement, here [points to a card], no!

Dor: So what do you mean by “placement?”
Li: Like, this one [points to a green square in a 2-by-2 matrix] might be here [points to a

different location in the same matrix], and then that one [pointing to the color currently at
that location] would be there [first location].

Dor: Ok, do you want to count that as different?
Li: [in a very reluctant voice that American readers might recognize as the “whatever” tone]

Uhhh . . . Ok . . . Should I write all of those combinations?
Dor: Yeah./4 seconds/Do you think . . . Do you think it’s necessary to do that? Do you think it’s

relevant to this . . . issue?
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SEMIOTIC LEAP 195

Li: Well, it depends on . . . what you want to find out.
Dor: Well, what we wanted to find out was, uhhh—I’m just going back to the thing you said. . .

—What are the chances of getting two green two blue.
Li: Well, then it’s not relevant.

Dor: It’s not relevant?! Ok . . . Why?
Li: Because, if you get . . . [continues coloring in an additional 2g2b card, so that now there

are 5+1 cards on the desk] Well, you can get two green and two blue in a couple different
ways—like that [lifts the two cards that are different permutations on 2g2b], but it’s still
“two-green–two-blue.”

The interviewer misinterprets Li, as though by “it’s still two-green-two-blue” he was referring to
a consistency in his expectation of 2g2b, whereas Li actually meant to convey that the two cards
show the same combination. (For the interviewer, “it” stood for the most likely event, whereas
for Li, “it” stood for the count of green and blue squares in the card.) The conversation thus turns
to issues of chance, even though Li had not really been entertaining thoughts about chance.

Dor: Ok. So you found . . . But, before, you said there’s a one-in- . . . five chance of getting two
green two blue, or something like that? Or, what?. . .

Li: Yeah.
Dor: So where’s that from, that “one in five”? Because you said. . .

Li: Well [moves aside the additional 2g2b card he had just created and lays his hands only
on the five cards he had initially created], these are all the possibilities you can get, not
counting where the marbles are, but. . .

Dor: Ok, so based on them. . .
Li: Yes

Dor: you’re saying there’s a one-in-five chance. So . . . if I scoop, then . . . then, kind of . . . over
lots and lots of scoops, about a fifth of the time I’ll get . . . I’ll get two-green–two-blue?

Li: Yeah.
Dor: Ok. We’ll get back to that. But now, let’s include the placements, alright?

Li: Ok . . . So you want me to write all the rest of them out?
Dor: Yeah, if you could please.

Li: Yeah!

Li complies with my request that he expand the sample space so as to include permutations on the
five combinations. Yet this compliance by no means indicates a change in Li’s reasoning about
the situation. Rather, having abandoned the initial intuitive sense that “the chance is probably
that you’ll get two and two” in favor of the analytically established sense that, “The chance that
you got two-and-two would be one-out-of-five,” Li appears to interpret my request to expand the
sample space as a prompt to perform a procedure that probably would not bear on the substance
of the situation as he now sees it. Li is not alone in his sentiment—not one of the 28 participants
in this study, at this particular phase in the interview protocol, appeared to perceive an attention
to order as instrumental to warranting their initial sense of distribution. Many participants asked
us flatly whether or not they should create the permutations and, when asked, in response, for
their own thoughts on this issue, some participants replied with variants on, “You’re the teacher—
you decide!” By and large, even as they were expanding the sample space, participants still did
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196 ABRAHAMSON

not perceive any practical utility in these additional objects, which they took to be redundant
duplicates of the original set.

Ontological Imperialism: The Case of Imposing an Ordered Semiotic Tool on an
Unordered View of the Sample Space. With his “one-in-five” estimation, Li is now treating
as equally likely events that are not so. I have commented earlier that previous research on
combinatorial reasoning has reported on a similar phenomenon, the equiprobability bias (see in
Jones et al., 2007, p. 917). However, previous research has not tied this equiprobability bias to
tensions between students’ intuitions and the semiotic tools made available for the students to
express their intuitions. That is, I contend that Li’s initial, mathematically correct anticipation of
a plurality of 2g2b, which he had determined on the basis of a perceptual judgment of the marbles
population, evaporated the moment he was asked to enumerate the possible outcomes, as I now
explain.

The school setting of the interview location, the disciplinary frame of the mathematical content,
the pragmatics of the dialogue, and in particular the interviewer’s allusion to the sample space
immediately after challenging the participant’s “2g2b” assertion, all gradually teamed to implicitly
suggest to Li that he should determine all possible outcomes of the random generator if he is to
support his sense of distribution (on the unuttered yet critical aspects of dialogue, see Grice, 1989;
Schegloff, 1996). Thus, Li enumerates the possible outcomes—first only verbally/gesturally and
then with the aid of the cards. However, Li does not yet know how to use combinatorial analysis as
a semiotic means of objectifying (Radford, 2003) his presymbolic notion of likelihood—namely,
Li does not yet know that the relative likelihoods of events are proportional to the number of
unique instances of each event, and that one should therefore determine, tally, and compare
all of these permutations, if one is to instantiate in mathematical inscription one’s intuitive
sense of distribution. So, Li does not inscribe his initial sense of likelihood into the five cards,
because he has no ready strategy for encoding that sense into the objects put at his disposal.
Moreover, Li is not aware that he has lost information due to this incomplete passage from
intuition to inscription. Thus, having created the five cards, Li construes them as though they
encode his sense of distribution—even though that sense of distribution has in fact slipped away,
unobjectified. The resulting absence of any inscribed trace of Li’s fragile sense of likelihood
condemns that sense to perdition: When Li “reads” the sample space he has only just “written,”
the cards bear no mnemonics to re-evoke and simulate the felt sense of likelihood. All Li sees is
a set of perceptually similar cards (e.g., the 2g2b card does not appear privileged as compared to
the 3g1b card). Thus, through the distorted reflection of a semiotic system, a variable distribution
is flattened.

We seem to be facing a pedagogical dilemma that may well obtain beyond the particulars
of this content and setting: Give students orderless semiotic means, for example, five eggcups
that could each contain an orderless set of four marbles, and you cannot highlight for them the
mathematically critical property of order; yet give students ordered semiotic means, such as these
2-by-2 cards, and the students lose the evanescent notion of likelihood. Indeed, Bamberger and
diSessa (2003) alert us to the potential woes of ontological imperialism: by introducing to learners
a semiotic system associated with a particular discipline, such as musical notation, we covertly
impose upon the learners normative perceptual categories that do not necessarily carve the world
at the same joints as the learners would, with potentially dire consequences for their construction
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SEMIOTIC LEAP 197

of personal connections toward the targeted content. The participants in the current study were
temporary victims of this ontological imperialism—en route to construing a sample space as
objectifying their pre-formulated sense of likelihoods, the participants are ill-equipped to use the
provided media so as to express the likelihoods they had initially sensed and, then, looking back
through the aperture of the expressive tools coerced upon them, the participants no longer see
those likelihoods. However, as the continuing narrative of the interview will demonstrate, the
participants’ fleeting sense of the probable can be re-evoked by alluding once again to the random
generator that had initially triggered that sense.

As we shall soon see, ontological imperialism may also surreptitiously create a chain of
communication breakdowns between the “imperialists” and the “subjects.” Namely, when a
student refers to a specific card as, e.g., 2g2b and says that it will occur most often, the student
is seeing the card as meaning the 2g2b event. However, the interviewer, who does attend to the
spatial organization of this card, construes it as meaning a particular permutation, for example,
the 2g2b card with two green squares in the top row, and, consequently, the interviewer implicitly
interprets the student’s utterance, too, as referring to a permutation, not a combination. Moreover,
the interviewer might assume that the student is using this permutation as metonymically referring
to its entire 2g2b event class (Abrahamson, 2008a; Abrahamson et al., 2008). And yet, the student’s
repudiation of the other permutations as irrelevant to the analysis suggests otherwise. To wit, the
student indeed sees the card as an orderless combination, just as—I contend—participants in the
Tversky and Kahneman studies saw “HTHT” as 2H2T (in any order). That is, participants’ biases
associated with the “representative heuristic” are the result of non-normative categorization, not
of non-normative inference.

The Tumultuous Alignment of Intuition and Inscription

Over the following 2.5 minutes, Li silently completes his construction of the sample space. The
cards now lie on the desk in five groups, sorted by combination. Over another 3 minutes, Li and
I discuss combinatorial-analysis strategies, and I guide him to create two additional cards that
were missing from the 2g2b group (once he had found four of those, Li explains, he had assumed
there could not be more—just as there could only be four cards in the 1g3b or 1b3g groups—so
he stopped searching). The full sample space is now complete. I ask Li whether, having gone
through this procedure, he has any new thoughts pertaining to his recent assertion that there is a
one-in-five chance of getting 2g2b. Li responds in the negative—he still thinks that the chance of
getting 2g2b is one-in-five.

The Reinvention of Classicist Probability. I guide Li to assemble the 16 cards into the
combinations-tower form. When the tower is built, I ask Li whether he wishes to share any
observations on this structure. Li comments on the step-like appearance of the five columns,
albeit he initially miscounts the size of the steps (he sees them as steps of two). I ask Li how many
cards there are in total, he says there are 15, I query his statement, and he re-counts the cards as 16
(he explains he had counted only 5 cards in the central column). It thus appears that Li has not been
paying much attention to the particular distribution of the 16 cards in the sample space. However,
in the following conversation, which lasts just over 3 minutes, Li will come to assert that the
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198 ABRAHAMSON

entire collection of cards should be considered in determining the expected outcome distribution
in hypothetical experiments with the marbles box. As the transcription that follows will make
evident, though, Li is in transition: his discourse includes several lengthy periods of silence, his
utterances are often hesitant, his speech and gestures are mismatched on several occasions (see
Church & Goldin-Meadow, 1986), and he switches three times between interpretations of the
sample space (marked in the transcription by underlined characters). Essentially, Li will relinquish
the one-in-five expectation for the frequency of the 2g2b event in favor of re-acknowledging its
expected plurality in the outcome distribution, and this re-acknowledgment will be quantitative
(“six-out-of-sixteen”) and not only qualitative (“the chance is probably that you’ll get two and
two”) as it had initially been. Following the transcription of this culminating episode, I will offer
several complementary interpretations for how cognitive, technological, and interpersonal factors
played into Li’s insight. (See http://edrl.berkeley.edu/publications/journals/C&I/Abrahamson-
C&I-Binomial-Li.mov for a video clip of these final 3.5 minutes of the interview.)

Dor: And, again I’m . . . at the risk of boring you . . . The same question. You see this [gestures
toward the entire sample space], and you say the chance of getting, uhhh, two . . . the chance
of getting, uhhh, a . . . scooping something with two-green is one-out-of-five.

Li: /5 sec/Well, actually . . . /3 sec/yeah [one-out-of-five]!
Dor: Ok.

Li: /2 sec/Actually,/7 sec/it kinda seems like it would be six-out-of-sixteen.
Dor: Huh! Ok, so what . . . so . . . ‘One-out-of-five’ now went to ‘six-out-of-sixteen.’

What . . . .how. . .
Li: Well, it’s like. . .

Dor: That’s quite a difference!
Li: Yeah. It . . . /10 sec/Well, there are sixteen . . . /4 sec/Well, actually . . . /10 sec/No, it’s

still—I think it still would be one-out-of-five.
Dor: Mm’hmm. So if I scoop, about a fifth of the time I’ll get a . . . something with two.

Li: Two of each.
Dor: Ok. So. . .

Li: ‘Cause like, these [indicates all the eleven cards above the bottom row of five cards] don’t
really matter. [see Figures 5a and 5b]

Dor: In what sense?
Li: Well, if you’re looking to . . . /4 sec/Well, if the placement mattered [gestures back and

forth between the scooper and the 11 cards], these would matter, but these [11 cards] are all
the same thing. These [within the 1g3b column, indicates the three cards above the bottom
card] are the same thing as this [points to the bottom card] except for the placement [repeats
gesture pattern for the 2g2b column and then the 3g1b column]. So it’s these same original
five [indicates bottom row] or, like, any one of these [indicates that any of the cards above
the bottom row could replace its respective bottom card] . . . /3 sec/that matters.

Dor: /5 sec/So, I mean, this issue of “placement,” that seems to be what the . . . It’s not just, like,
you and me deciding, “Let’s use placement” or “Let’s not use placement.” It’s, like, how
does that relate to the situation in the world, like, the scooping?—Should we care about
placement or not? And it seems like you’re saying . . . “not.”

Li: Uhhm, yeah.
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SEMIOTIC LEAP 199

FIGURE 5 (a). Li sees the permutations as irrelevant to the task: “These don’t really matter” (gesture indi-
cated by curved-arrow overlays). (b). A schematic representation of Li’s apparent perceptual construction of the
combinations tower.

Dor: Ok. So your prediction is that if we scooped, say . . . I donno, 100 times, we’ll get about
20 of these, 20 of these, 20 of these, 20 of these, 20 of these? [each of the “20 of these”
utterances is accompanied by a gesture, pen in hand, toward a column in the combinations
tower, beginning with the right-most, 4g column, and moving to the left (see Figure 6)].

Li: /5 sec/Actually, no. I would . . . I’m going back to . . . there’s, out of all the possibilities
you could get, six-out-of-sixteen are two-and-two, and these [indicates the 0g and the
4g cards] are only one-out-of-sixteen, so . . . Like, what I was saying—“one-out-of-five
chance”—that would mean . . . /6 sec/‘Cause, [vehemently] you’ll get these [hand sweeps
up and down the 2g2b column] more than these [holds up the single 4g card], ‘cause
there’s six of these and there’s only one of these. So that [his own earlier “one-out-of-five
chance” statement] would mean that you would get about 20 percent of . . . Uhh, you would
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200 ABRAHAMSON

FIGURE 5 (Continued)

get 20 percent of the four-greens and four-blues . . . But now I’m realizing that’s not true,
because [indicates the vertical extension of the 2g2b column]. . .

Dor: Oh, I see, so you kind of . . . You built up this thing and suddenly you had a contradic-
tion . . . where you say, on the one hand this [4g] is one-out-of-sixteen, but according to the
“one-out-of-five,” it should be one-out-of-fi . . . , like, 20 percent? And so, someth. . .

Li: Yeah, ‘cause they’re all . . . there’s six possibilities of these [sweeps hand along the 2g2b
column] and one of these [holding the 0g and 4g cards], and the chance of getting each one
of these [indicates in the general direction of the entire sample space] is one-out-of-sixteen.
So . . . but then, with these six [showing 2g2b column] it’s six-out-of-sixteen, and these
[holds up 0g card] are still only one-out-of-sixteen, and these [points to the 1g3b and 3g1b
columns] are four-out-of-sixteen.

Dor: Uhuhh. So . . . so what made you change your mind, from one-out-of-five to six-out-of-
sixteen?

Li: Well, when you said that there would be 20 percent, 20 percent, 20 percent, 20 percent,
20 . . . Then I realized that . . . . that would be wrong.

Li’s new realization is embryonic. My claim is certainly not that Li has achieved a stable
understanding of the material at this point or that he has mastered the key calculations involved.
Rather, I shall now focus on the aforementioned exchange, because, with Li’s abrupt turns of
mind, it helps reconstruct the microgenesis of his conceptual development.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
1
:
1
4
 
7
 
J
u
l
y
 
2
0
0
9
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FIGURE 6 “20 of these, 20 of these . . . ”: Using gesture so as to link his speech utterances with particular
stimuli in Li’s visual field, the interviewer orients Li’s view toward the columns of the combinations tower, thus
cuing a particular visual construction of the tower that highlights the columns’ variable vertical extension. Yet,
simultaneously, the interviewer contradicts the gestures by coding these vertical extensions verbally as indexing
equivalent frequencies. Li soon responds to this rhetorical speech–gesture mismatch.

Order Matters: Intuition Reconciled With Inscription. Li’s initial deliberations in the
aforementioned transcription might be summarized and heavily paraphrased as follows:

When I incorporate the entire sample space into my perceptual attention and construct the space as a
set of vertically extending columns, I sense 2g2b as the most likely event. And yet I have no logical
grounds to consider all these permutations as pertinent to the process—the eleven cards above the
bottom row appear to be redundant duplicates of the actual five things I can get—and so I switch back
to the idea that only five objects matter. But these five objects bear no sign that they are anything but
equally likely, and so I reason that they each have a one-in-five chance of occurring.

Thus, guided by the interviewer’s prompts, Li initially vacillates between two vying mental
constructions of the combinations tower but fails to achieve coherence: (a) a global view of the
entire sample space is intuitively grounded in perceptual judgments of color ratios in the marbles
box, yet a local view of the tower’s constitutive particulate elements brings into question the
logical necessity of including the permutations; and (b) a view of the five cards in the bottom row
appears to capture “what we can get,” yet the flat distribution is not intuitively grounded. The
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202 ABRAHAMSON

interviewer dissolves this deadlock by juxtaposing perceptual and declarative aspects across these
two views. Namely, the interviewer gesturally draws Li’s visual attention to the vertical variability
of the distribution whilst verbally constructing a flat distribution—“20 of these, 20 of these, . . . ”,
and Li apparently finds this juxtaposition jarring enough so as to abandon the one-in-five view
that incorporates five elemental events taken as aggregate events in favor of a six-out-of-sixteen
view that incorporates five aggregations (sets) of elemental events. These five aggregations, which
had been perceived as mostly superfluous icons, shifted in their semiotic status as their collective
spatial property of height first took on the contextually pertinent signification of the sets’ relatives
frequencies.

Finally, note a grammatical distinction, in the aforementioned transcription, between the first
and second instances when Li articulates the viability of the 6/16 construction of the chance of
the 2g2b event. In the first instance, Li says “it would be six-out-of-sixteen,” where the singular
pronoun “it” stands in for the noun phrase “the chance of scooping a 2g2b sample,” a version of
which appears in the interviewer’s earlier interrogative statement. Critically, the five permutations
above the bottom 2g2b card are not mentioned as integral elements of this 2g2b aggregate event
but only as a property of the column associated with the event’s expected frequency. In the
second instance, however, Li states that “you’ll get these [2g2b cards] more than these [4g card],
‘cause there’s six of these and there’s only one of these.” Here, the plural pronoun “these”—the
linguistic patient of random selection encapsulated in the verb “get”—marks that Li has adjusted
his ontology of the marbles-box experiment from a collection of five events per se to a collection
of five event classes (aggregates, sets) that index his sense of distribution.13 Thus, Li’s initial
experience of judging likelihoods in the marbles box was “lived further in a new creation of
meaning that takes account of, and also shifts, all the earlier meanings” (Gendlin, 1982, p. 166).14

After-Math: Overview of Li’s Learning Trajectory in and Beyond the Interview

Over the course of the interview, Li shifted back and forth several times between two construc-
tions of the artifacts—the marbles-box random generator and its combinations-tower distributed
sample space—and each of these views, in turn, underlay the inference of either correct or in-
correct mathematical propositions that Li asserted (see Table 1): (1) an aggregate-event-based
view framed by the initial intuitive inference for the outcome distribution in the marbles-box

13It is this sense of an event class that underlies mathematical phrases such as “the chance of getting any of these”
or “the chance of getting two green and two blue in any order”—phrases that may be challenging due to the ostensible
assignment of a single chance value to a collection of objects (whose respective chances add up to the event’s chance).

14Was Li’s “6/16” mathematical proposition indeed grounded in his initial “2g2b” intuitive inference? That is, what
role, if any, does the initial interaction with the marbles box play in participants’ learning path? Could the initial
interaction in fact be a superfluous activity such that we could cut to the chase and begin the design directly with the
combinatorial analysis? To examine this question empirically, we ran an experiment in which 23 middle-school students
were randomly assigned to three conditions that framed the nature of their initial interactions with the marbles box:
(a) “leading question,” in which essentially the current protocol was enacted; (b) “no question,” in which participants
were shown the marbles box but no additional problem or context were invoked; and (c) “distracter question,” in which
participants were asked to estimate how many without-replacement scoops are required to empty the box. We found
that leading-question participants were more likely to question the necessity of permutations in the sample space as well
as eventually interpret the sample space as meaning that 2g2b would be the most likely event (Mauks-Koepke, 2008;
Mauks-Koepke, Buchanan, Relaford-Doyle, Sushkova, & Abrahamson, 2009).
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SEMIOTIC LEAP 203

TABLE 1
Mathematically Correct and Incorrect Propositions Associated With Aggregate-Event- and

Elemental-Event-Based Views of the Artifacts, Listed by Their Order of Assertion in Li’s Interview

Mathematical Status of Proposition
Orientation of View

Toward the Sample Space Correct Incorrect

Aggregate-Event-Based A. Qualitative description of relative
likelihood (“The chance is probably
that you’ll get 2 and 2”)

B. Equiprobable bias (“The chance that
you got 2-and-2 would be 1-out-of-5”)

Elemental-Event-Based D. Quantitative articulation of relative
likelihoods (“It would be 6-out-of-16”)

C. Permutations as redundant duplicates
(“These [permutations] don’t matter”)

hypothetical experiment—a view that was mathematically correct (Assertion A, Table 1) yet was
initially objectified in the construction of only five discrete objects in the sample space (Assertion
B); and (2) an elemental-event-based view that emerged only through the construction of the
sample space and its assembly in the form of the combinations tower—initially Li was in a state
of transition (Assertion C), but then he recognized that the expanded sample space could be
instrumental in warranting his re-evoked view of the marbles box (Assertion D). In Table 1, the
microgenetic arch from Assertion A (correct) through to Assertions B (incorrect), C (incorrect),
and D (correct) is reminiscent of the U-shaped multi-year developmental trajectories discussed in
Stavy and Strauss (1982). Also, whereas Assertion A was directed toward the immediate situation
(the marbles box) and Assertions B and C were directed toward different constructions of the
mediated situation (the cards), Assertion D synthesized the immediate and mediated situations
(the cards, taken as semiotic means of objectifying the marbles box).

Clearly, Li’s understanding of binomial distribution is at best embryonic and still requires
much discursive interaction, such as in this clinical fashion, so as to achieve stability. Namely,
I have characterized Li’s move from Assertion A to Assertion D (see Table 1) as a form of
guided reinvention (Freudenthal, 1986; Gravemeijer, 1994), such that Li is still to substantiate
this discovery with further analyses of the sample space’s internal properties and their implications
for phenomenal aspects of the random generator. Indeed, data from the interviews with the other
sixth-grade participants strongly suggests the initial instability of their Assertion D, as implicated
in their great difficulty in explicitly reconciling ostensibly mutually exclusive inferences drawn
from elemental-event- and aggregate-event-based views of individual cards (Abrahamson et al.,
2008; Abrahamson & Cendak, 2006).

In the remainder of the Li interview, where he worked with computer-based simulations of the
marbles-box experiment, Li learned to interpret actual empirical outcome distributions, which
he saw within five dynamically incrementing histogram columns, as randomized proportional
“stretches” of the combinations tower (see Abrahamson, 2006b; Abrahamson & Cendak, 2006).
Yet Li has still to develop his current understanding so as to accommodate cases of experiments
with binomial random generators in which the probabilities are other than .5 (see Abrahamson,
2009a, for activities designed to support this extension). Finally, over the course of his math-
ematical development, Li should learn to conduct these forms of reasoning using alternative
approaches to combinatorial analysis, such as tree diagrams, as well as a range of semiotic tools
that ultimately include symbol-based algebraic strategies such as the binomial function.
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204 ABRAHAMSON

Li was one of 27-out-of-28 participants who offered mathematically correct insights into the
relation between the combinations tower and the expected outcome distribution in the marbles-
box experiment, thus grounding the normative view of the sample space in their intuitions of
likelihood. The prima facie surprising nature of the participants’ insight as well as its pivotal
role in their conceptual development toward a desirable learning outcome have made this insight
a focus of our investigation into the interface of tacit and mathematical reasoning, as I now
elaborate.

DISCUSSION: GUIDED MATHEMATICAL INSIGHT AT THE
INTERSECTION OF COGNITIVE-SCIENCE AND SOCIOCULTURAL

THEORY—A PANOPLY OF COMPLEMENTARY INTERPRETIVE
PERSPECTIVES

Several cognitive mechanisms and interpersonal strategies may be implicated as factoring into
Li’s adoption of the normative view of the sample space. The following list supplements earlier
discussions of the work of diSessa, Gelman, and their respective collaborators so as to demonstrate
the potential utility of integrating cognitive-science and sociocultural theory into a comprehen-
sive model of mathematical learning (a “dialectic” view, see diSessa, 2008b). Namely, I shall
demonstrate that each of the perspectives, below, illuminates the data, yet neither of them on its
own furnishes a viable explanation for how Li grounded the mathematical view of the sample
space in his tacit judgment pertaining to quantitative properties of the marbles-box hypothetical
experiment. Following the survey, I shall therefore return to the construct of semiotic leap, which
I introduced earlier in this manuscript, so as to evaluate whether this proposed construct coher-
ently addresses the questions that rose from the analysis of Li’s behavior in light of the apparent
shortcomings of the theoretical models surveyed in what follows.

Note that by pointing to the inadequacies of the surveyed frameworks to furnish complete
explanations for Li’s behavior, I am by no means critiquing these frameworks, because they
were not necessarily conceptualized to address research problems relevant to phenomena of this
particular nature. Rather, I have selected major perspectives that each provide a piece in what I
believe is a larger puzzle.

Intuitive Rules

Stavy and Tirosh (1996) argue that students use a set of simple, at times fallible, heuristics to
draw inferences under conditions of limited information (cf. Van Dooren, De Bock, Weyers, &
Verschaffel, 2004). Notably the “More A—More B” intuitive rule guides students to compare
two objects along some accessible dimension as a means of inferring their relation with respect to
some other, inaccessible dimension, regardless of whether or how these two dimensions are truly
related. Thus, in comparing the 2g2b and 4g events, Li sees that 2g2b > 4g along the accessible
dimension of “number of permutations” (or “height”) in their respective combinations-tower
columns (6 > 1), and so he opportunistically infers that 2g2b > 4g along the inaccessible target
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SEMIOTIC LEAP 205

dimension “frequency of occurrence.” This interpretation, however, leaves out Li’s motivation
and tacit criterion for evaluating the veracity of his inference.

A Sample Space as Second-Order Random Generator

A sample space with equiprobable elemental events, such as in the case of the marbles-scooping
experiment used in this study (p = .5), can be perceived as constituting an open “urn” onto
itself. That is, selecting randomly from the 16 cards lying on the desktop is commensurate with
sampling from the marbles box, for example, both activities have a 6/16 chance of drawing a
2g2b combination. Moreover, the material, iconic, and discrete make up of the sample space
strongly suggest this affordance as a sampling device (see T. Martin & Schwartz, 2005, for
another case where new affordances emerged for semiotic artifacts taken as objects). Finally, note
in the opening of the aforementioned culminating transcription that the interviewer explicitly
refers to the combinations tower when asking Li for his expectation of outcomes in the marbles-
box experiment. Whereas the interviewer sees the combinations tower as modeling conceptually
relevant properties of the source population of marbles (i.e., as a semiotic artifact), Li has not yet
constructed this relation normatively and therefore he interprets the interviewer’s gesture toward
the combinations tower as going no further than that set of 16 cards (non-semiotic objects per
se). Thus, when Li says, “[Y]ou’ll get these [2g2b] more than these [4g], ‘cause there’s six of
these and there’s only one of these,” he may be inferring on the basis of a perceptual judgment of
distribution broadly similar to his strategy for the marbles box.

Whereas this suggested view of the sample space as a sampling space is logically appealing,
still it does not explain how Li is tying between the source domain (the marbles box) and its
iconic model (the combinations tower). Namely, we are left with the question of whether and
how Li construes inferences drawn from the combinations tower as bearing on properties of the
marbles box.

Conceptual Blending

Fauconnier and Turner (2002) explain human problem solving as based on conjuring into the
mental problem space imagistic cognitive material and then manipulating these images so that
they become aligned and merged, as a means of arriving at a coherent imagistic solution (where
images are multimodal and not only visual, cf., Goldin, 1987). Hutchins (2005) points to the
roles of material objects in anchoring these conceptual blends. I submit that Li blended into
the columns of the combinations tower—which constituted the material semiotic tools made
available for his mathematical argumentation—his preformulated image of relative likelihoods.
This blending was facilitated by Li’s guided attention toward the five columns’ variable vertical
thrusts (1, 4, 6, 4, 1), a construal of the sample space that he could then align with his felt sense
of greater and lesser chances associated with the five possible events. Subsequent to establishing
the blend, Li runs the blend by treating each column as a collection of discrete objects on
which he applies enumeration, comparison, and calculation. This explanation still leaves open
the question of Li’s initial motivation for blending his tacit inference into the available semiotic
medium.
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206 ABRAHAMSON

Semiotic Means of Objectification

Radford (2003; 2006a; 2006b), building on Soviet Activity Theory, yet expanding it, argues for a
broader cultural-semiotics conceptualization of the phenomenon of mathematical reasoning as a
praxis cogitans. I borrow from this framework the powerful idea that an individual’s mathematical
learning involves appropriation of cultural artifacts, which are embedded in a system of practice,
as a means of objectifying personal presymbolic notions regarding quantities, relations, and
operations—a “linguistically impossible-to-articulate mode of reflecting which, in its turn can but
reveal itself through action” (2006a, p. 13, original italics). Through these acts of objectification,
Radfrod argues, the learner builds meaning for the personal notions as well as for the artifacts
(for related work, see Bartolini Bussi & Boni, 2003; Bartolini Bussi & Mariotti, 1999; Hutchins
& Palen, 1997; Lemke, 1998, 2002; Radford, 2008).

Ever since Li was asked to evaluate the outcome distribution of the marbles-box experiment—
and moreover, once his evaluation had been challenged—he had been groping for a semiotic
means of objectifying his intuitive sense of distribution. The sample space in its totality of 16
equiprobable outcomes did not initially appear to directly articulate his preformulated intuition
of likelihood, which had been tacitly couched in a 5- and not 16-event construal of the experiment,
but the combinations tower did ultimately substantiate this intuition as a discursive tender and,
reciprocally, lent meaning to the mathematical artifacts (i.e., to the sample space “product” as
well as, retroactively, the combinatorial-analysis procedure–tool).

Radford’s framework, with its discourse-based view on personal meaning making, helps
situate Li’s cognitive operations within the broader material and interpersonal contexts of the
interview. However, a purely cultural-semiotics perspective cannot treat innate ontogenetic
perceptual capacities, such as those evident in population-to-sample inferences, because these
are presumably available prior to an infant’s immediate immersion in the acculturation process
(Xu & Vashti, 2008).15

Critical Features of Ambiguous Objects

Li’s deliberations are grounded in an alternating view of the combinations tower as either, on the
one hand, a collection of five objects (the bottom row) with 11 additional objects above them,
or, on the other hand, five integral columns. The combinations tower is thus an ambiguous figure
whose meaning is contingent on its perceptual construction (its gestalt). Tsal and Kolbet (1985)
found that interpretations of ambiguous figures can be manipulated by drawing participants’
visual attention to particular regions in the figures that inhabit critical features for disambiguating
the figures one way or the other. This, I believe, is precisely what the interviewer does, if implicitly,
when, using language and gesture, he draws Li’s attention to particular parts of the combinations
tower or frames Li’s viewing of the tower. As in the cognitive-psychology experiments, where
participants swayed between “duck” and “rabbit” seeings of the classical Jastrow drawing, so Li

15Evolutionary sociocultural theorists might argue in return that, on a phylogenetic scale, innate capacities can never-
theless be attributed to the survival of gene carriers whose chance innate capacities were best adapted to socially emergent
needs and hence were naturally selected and further honed over subsequent generations, recursively.
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SEMIOTIC LEAP 207

oscillated between two semantic attractors that were associated with particular structural elements
of the combinations tower.

The experimental design of this cognitivist treatment is instrumental in highlighting the role
of external manipulation in individuals’ construction of visual percepts. Next, I discuss related
anthropological and learning-sciences treatments, which draw in issues of content, practice, and
discourse.

Professional Vision, Disciplined Perception

Goodwin (1994) has described discursive devices that experts use in order to indoctrinate novices
into disciplinary practice. In particular, the expert highlights some particular aspect of a domain
of scrutiny and codes it with respect to a professional task (see also Goodwin & Goodwin, 1996).
Stevens and Hall (1998), who focused on the mathematical discipline, used a similar framework
to monitor the conceptual development of a student by analyzing the discursive practices of
a tutor–tutee dyad. Notably, the tutor acculturated the tutee to particular orientations of view
conducive of successful negotiation of meaning for symbolical representations, such as a graph
associated with a linear function.

In like vein, the interviewer in our data oriented Li’s view toward the combinations tower in
a way that enhanced the tension between Li’s extant inference for the marbles-box experiment
and the visible collection of 16 elemental events. Specifically, the interviewer’s gestures-with-
pen toward the combinations tower, accompanied by the speech utterance “20 of these, 20 of
these, . . . ,” highlighted the columns’ variable vertical trajectories yet coded them verbally as
counterfactually demarcating a flat distribution, thus suggesting to Li a possible conflict in his
own reasoning.

These frameworks help us understand how Li learns what to look at, how to look at it, and
what to associate with or ascribe to phenomena, in order to participate successfully in a socially
meaningful system of practice. Still, I contend, we must address the symbol-grounding question
and, in particular, the cognitive substance of Li’s a priori tacit sense and how it becomes elaborated
as a perceptual construction of an available artifact.

Instrumental Genesis

Vérillon and Rabardel (1995), exponents of the French school of mathematical didactics, differ-
entiate between an artifact, any human-made object, and an instrument, an artifact that has been
“instrumentalized,” that is, put toward a particular objective. In our study, students were never
told explicitly that the combinatorial-analysis procedure they were engaging might bear on the
issue of expected outcome distribution. I submit that only once Li perceived the combinations
tower as a means to support his initial intuition did he instrumentalize the sample space as a
useful mathematical tool and—retroactively—combinatorial analysis as a useful procedure. This
study thus sheds new light on the pedagogical principle of guided re-invention. Namely, the study
demonstrates that students can re-invent a procedure-as-instrument even when they are explicitly
taught to perform the procedure mechanically.

Instrumental genesis is a powerful framework for our purposes, because it patently ties the
respective work of Piaget and Vygotsky. Namely, the framework explains individual learning
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208 ABRAHAMSON

in the social context as the development of utilization schemas that are internalizations or
“instrumentations” of activities in goal-oriented situations. This French didactics framework,
however, does not address the question of how the utilization schemas emanate from tacit knowl-
edge, that is, how they emerge from the application of enabling constraints in perceptual activity.

Reification and the Commognitive Framework

Any investigative analysis of mathematical behavior at the cusp of intuition and objectification
suggests the relevance of research on reification. Sfard (1991) has defined reification as “ . . . an
ontological shift—a sudden ability to see something familiar in a totally new light . . . an in-
stantaneous quantum leap: a process solidifies into object, into a static structure” (pp. 19–20),
e.g., “a + b,” once a multi-symbol directive to perform the addition operation conjoining two
unknown values, is re-framed as a single integral entity that can be referred to and operated on.
According to reification theory, learners, loosely mirroring historical evolution of mathematical
knowledge, develop understandings of content by maturing from process to product, albeit the
process–product duality remains available as a productive dialectic agent of subsequent reasoning
and discovery.

Getting back to the case of Li, in order to apply the construct of reification we must identify the
process that becomes a product. Yet, whereas the combinations tower is the summative product
of the combinatorial-analysis process that Li enacted himself, Li’s insight was in objectifying
not this analytic process involving the construction of 16 cards but the presymbolic sense of
population-to-sample inference invoked by the marbles-box scenario. Moreover, the activity
sequence and dialogue strongly suggest that Li’s initial intuition recruited cognitive mechanisms
epistemically incompatible with the combinatorial-analytic process. Therefore, Li’s is not a case
study of reification in the sense that Sfard and collaborators have used this term.

That said, Li’s data are elucidated by considering a pedagogical tension discussed by Sfard
and Linchevski (1994), who implicate premature introduction of mathematical artifacts that
reify processes still under routinization as liable to jeopardize students’ grounded passage from
solid understandings toward the target conceptual structure. For example, students introduced
to functions prior to consolidating algebraic reasoning experience challenges in conceptualizing
functions as reifying their emerging algebraic reasoning. Implications for instructional design are
nuanced. Indeed, Li’s case study may be viewed as a proof-of-concept that initially “irrelevant”
artifacts can in fact be individualized as useful consolidations of earlier knowledge (Sfard, 2002,
2007). This apparent ambiguity in the literature regarding the potential of artifact-based mathe-
matics instruction is unraveled by illuminating discursive as well as meta-discursive contingencies
of students’ productive interaction with symbolic artifacts, as I now elaborate.

Sfard (2007) introduced the commognitive (communicative + cognitive) framework, which
draws from the cognitive sciences and sociocultural theory and builds on a career of scrutinizing
teacher–student interactions. According to this framework, mathematical reasoning is a form of
internal discourse. Mathematical learning is the expansion of this discourse so as to accommodate
new symbolic artifacts as well as new meta-discursive norms that guide the perception and use of
such artifacts (cf. “register” in Duval, 2006). These artifacts and norms are individualized (inter-
nalized), thus enabling a learner to participate and gradually assume agency in the mathematical
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discursive community and ultimately perhaps impact the evolution of the field and the education
of new initiates, and so on.

Looking specifically at students’ attempts to use unfamiliar symbolic tools within the context
of goal-oriented curricular tasks, Sfard (2002) has identified two critical inquiry activities: (a)
intimations are attempts to intuitively construe the new artifact, for example, a graph of a statistical
distribution, in light of familiar visual or interactive cues; and (b) implementations are the
exploratory applications of these intimations, including an evaluation of their utility to the task
at hand. Indeed, in terms of Sfard’s framework, one might say that Li responded to “visual” as
well as “metaleval intimations” induced by the formatted sample space, which he was guided
to construct, by applying the sample space as a “source” toward the “target” of his presymbolic
notion of the anticipated distribution in the marbles-box experiment. This particular “attended
focus” on the sample space brought about a “decision” that the sample space affords a warrant for
the earlier inference. That is, Li acknowledged that “the application of the attending procedure
would produce the same decision as the one dictated by the intuition” (Sfard, 2002, p. 341). Note,
however, how—as in the process–product duality of the reification phenomenon—the original
intuition treated in the commognitive description is evoked by attending to a symbolic tool in
question, not to a situation encountered previously, as in the case of Li who is trying to make
sense of the combinations tower in light of his prior encounter with the marbles box. In particular,
the commognitive description is not geared to treat the cognitive mechanism by which imagistic
aspects of an intuition can be invoked by one artifact then carried over and grounded in another.16

16I wish to emphasize the potential contributions of Sfard’s magnum opus to my own research program. The Seeing
Chance interview can be viewed as an asymmetrical negotiation, in which the interviewer creates an opportunity for the
student to consider the relevance of the analytic procedure as complementary to, and enhancing of, his naive inference
that was based on perceptual judgment. Pivotal to the completion of this negotiation was that the student be able to view
the thematic mathematical object—the 2-by-2 matrix—as one of 16 (equiprobable) events and not only as one of five
“things you can get,” and that he understand the implications of alternating between these views. Combinatorial analysis
and the discussion around the products of this analysis—the sample space, first loosely grouped on the desk and then
assembled into the orderly combinations tower structure—constituted the context in which the student was expected to
expand his repertory of views toward the events so as to accord with the interviewer’s. However, seeing an event as one
of 16 rather than as one of 5 is complexly contingent on understanding why one might wish to adopt a new view of the
object. That is, relinquishing or modifying a world view begs a willingness to participate in a discursive practice that
entails an adoption of what initially appears to be an arbitrary construal of material substance. In this sense, combinatorial
analysis, as opposed to direct perceptual judgment, can be viewed as a

new [and incommensurate] discourse . . . .governed by meta-rules different from those according to
which the student has been acting so far, . . . .[thus entailing] a situation in which communication is
hindered by the fact that different discussants are acting according to different meta-rules (and thus
possibly using the same words in differing ways). . . . Only too often, [discursive] commognitive
conflicts are mistaken for factual disagreements, that is, as a clash between two sentences only one
of which can be correct. . . . Without other people’s example, children may have no incentive for
changing their discursive ways. From the children’s point of view, the discourse in which they are
fluent does not seem to have any particular weaknesses as a tool for making sense of the world around
them. (Sfard, 2007, pp. 574–575)

Sfard concludes that a student’s willingness to engage in other people’s discourse is complexly related to the student’s
sense of identity. Sfard thus paves methodological avenues for investigating relations between identity and learning,
relations that are becoming increasingly central to the study of diversity in mathematics education.
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Peircean Generative Abduction

This study is ultimately an exploration of the missing link between informal perceptual intuition
and formal mathematical reasoning. Investigations of intuition and reasoning naturally hark back
to the Attic philosophers, and so we need not look too far afield for a legacy of expository texts
on either of these putative facets of human thought.17 In particular, a neo-Classical analysis of
Li’s utterances as disclosing a concatenation of logical operations helps us sort between thoughts
that are logical imperatives (deductive), thoughts that build on patterns that have emerged in the
phenomena under scrutiny (inductive), and yet other thoughts that appear to draw on resources
not immediately apparent in the situation. The latter type of thoughts have been whimsically
named abductive—the neologism attempts to capture the sideways or stealthlike introduction of
an idea into the logical thought process (Peirce, 1931–1958). Abductive reasoning is typically
triggered by an apprehension of a situation that appears surprising and illogical. Specifically, an
abduction is the explorative conjecture of some would-be rule that, if only true, would reestablish
order into the baffling situation. Thus, I am using the term “abduction” and its cognates to refer
to a logical operation based on noticing relations among properties of (artifacts generated as
part of an inquiry process into) a phenomenon and interpreting these observations as a basis for
hypothesizing explanations for this phenomenon.

By introducing the notion of abduction as a sister operation to deduction and induction, Peirce
both captured the unique nature of these inventive leaps of logical faith and legitimized their
endorsement and scrutiny in the analysis of human reasoning. Indeed, some cognitive scientists
(Thagard, 1981), semioticians (Shank, 1987, 1998), philosophers of science (Fischer, 2001;
Midtgarden, 2005), and mathematics-education researchers (Norton, 2008; Rivera, 2008) have
been pointing to the crucial role of abductive reasoning in the original invention and guided
re-invention of scientific and mathematical knowledge.

Li’s notion that entire sets of elemental events within the sample space—and not just five
unique events at the base of the combinations tower—should be taken as bearing on the question
of relative frequency could be explained as an abductive thought process. Namely, Li would be
reasoning that,

If only it were true that, “The more unique events in a set, the more frequently are its events sampled,”
then my initial intuitive inference, coming from the marbles box, that 2g2b is the most likely thing
we can get, could still hold, even though engaging in combinatorial analysis has led me to assume
otherwise.

Subsequent to this abduction, Li pursues an inductive line of reasoning by which he compares
other columns in the combinations tower so as to evaluate whether their relative heights, too,
resonate with his intuitive expectation of relative outcome frequencies in experiments with the

17The Vygotskiian legacy, and in particular the ethnographical work of Alexander Luria in the Ural, has demonstrated
that “naı̈ve” logical reasoners do not necessarily reason syllogistically as “scientific” reasoners do. Therefore, I never
judge middle-school students’ reasoning by the extent to which they subscribe to the ineluctable deductivity of the formal
syllogistic format, because I view this format as a cultural tool in which the participant may well be unfluent. Indeed,
whereas the content of the interlocutors’ turn taking in the transcribed excerpts of this interview might be construed as
constructing a syllogistic sequence of statements, these structures are at most suggested and never explicit.
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SEMIOTIC LEAP 211

marbles-box random generator. Thus, the new rule that Li had hypothesized may become available
for performing deductive inference within this context and perhaps beyond.18

Mathematics-education researchers working in a Peircean framework (e.g., Bakker, 2007;
Bakker & Hoffmann, 2005; Norton, 2008) have contended that Peirce’s constructs offer a solution
to the “learning paradox” discussed by Bereiter (1985), namely the question of how students
construct meaning for signs if the notions denoted by these signs were not a priori available
to them (see also Duval, 2006, on the “cognitive paradox”). The Peircean conjecture that new
insights—abductions, hypostatic abstractions, collateral knowledge—can emerge from creative
perception of diagrammatic information constitutes a response to this paradox and re-casts the
question of meaning making as semiotic activity within discursive interactions.

Semiotic Leap

Indeed, I view Li’s inference as essentially abductive and as constituting the basis for him to
further build that which Peirce calls “collateral knowledge” of the semiotic artifacts and thus of
the targeted content. And yet, I searched for a construct that might better capture the necessarily
semiotic nature of students’ insight-based learning, as they interact with the cultural tools intro-
duced into their learning environment; a construct that would capture the epistemological gulf to
be forded between tacit inference and formal reasoning. Hence, I have coined semiotic leap as
a means of describing an individual’s discourse-based pragmatic appropriation of an expressive
object or form whose perceptual construction resonates with the original tacit inference. First, the
leap occurs. Second, the logical operation of abduction determines an explicit rule that sanctions
the semiotic leap, and this rule is the very stuff of sense making and deep content learning.

With the construct of semiotic leap, I thus intend to describe cognitive actions in which
learners, who are solving a problematic mathematical situation, identify and use objects they
find in their environment as semiotic tools for objectifying intuitive inferences pertaining to the
situation, even before they fully understand the mathematical relations between the object and
the situation, that is, before they have made sense of the mathematical object. Semiotic leaps
are further characterized by emergent, pre-articulated reasoning that draws greatly on perceptual
cues from objects yet may bootstrap a learner toward building sense for the target mathematical
content. The mechanism enabling semiotic leaps is conceptual blending (Fauconnier & Turner,
2002) of mutually attracting multimodal percepts experienced in immediate (source situations)
and mediated (represented, modeled) situations, by which a learner first comes to inhabit the
semiotic space between the signifier and the signified.

I theorize such blending as instigated by a combination of cognitive and sociocultural resources.
That is, the learner’s heuristic inferences (Stavy & Tirosh, 1996) with regard to an unfamiliar
mathematical artifact are triggered by the facilitator’s perceptual highlighting (Goodwin, 1994;
Stevens & Hall, 1998) of the artifact’s critical features (Tsal & Kolbet, 1985), such that the
artifact comes to constitute a material anchor for the conceptual blend (Hutchins, 2005). Initially,

18A Peircean analysis of Li’s behavior as exemplifying abductive reasoning is further elaborated elsewhere
(Abrahamson, 2009b). To read further on the history, roles, and mechanisms of C. S. Peirce’s “generative abduction” and
diagrammatic “hypostatic abstraction” in mathematical [re]-discovery, see Bakker and Hoffmann (2005), Heeffer (2006),
and Radford (2008).
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212 ABRAHAMSON

the learner may experience the blend as a fortuitous discursive device—an available medium
she or he has appropriated to build a warrant for a local mathematical argument. However,
once the blend is evaluated by the learner (and sanctioned by the facilitator) as an acceptable
mathematical support for the initially intuitive inference, the participant instrumentalizes this
artifact (Vérillon & Rabardel, 1995), that is, appropriates the object as a tool for accomplishing
similar mathematical tasks. Still, the learner’s reasoning that underlay the semiotic leap might be
abductive and skeletal, but now the learner may be in a cognitive position and affective disposition
to explore the object more thoroughly, inductively, and determine how its elements relate to the
intuitive inference. Through dialogic reflection, the learner thus begins to synthesize knowledge
emanating from intuitive faculties and analytic inference (Schön, 1981).19

SUMMARY

I have presented an analysis of one student’s learning process, which I view as an individual’s
conceptual micro-development within the context of a concerted effort involving a researcher-as-
tutor, a variety of media, and an activity sequence that included a problem, potential solution paths,
and a protocol-based set of prompts. In order to make sense of Li’s behavior in this complex setting,
I drew on theoretical models and constructs from cognitive sciences, sociocultural literature, and
educational semiotics, which treat issues of intuition, artifacts, teaching, perception, reasoning,
learning, and the relations among these. This integrated perspective illuminated the interview
as a scenario where a student’s mediated interaction with material objects both elicited his
conceptually relevant presymbolic intuitions for a problem-based phenomenon and guided him
to coordinate these intuitions with the standard mathematical tools and procedures related to
the disciplinary handling of this class of situations. Leaning heavily on distributed-cognition
and cultural-semiotics research as well as on conceptual-blending theory, I suggested that Li’s
coordination of his tacit inference and the mathematical artifact was a semiotic action engendered
by the pragmatics of the problem-solving context. Namely, I submit that Li, who initially made an
intuitive inference regarding the properties of an object yet then had his inference challenged by
the interviewer, was motivated to blend presymbolic, embodied elements of his naı̈ve notion into
resonant structural aspects of an available, substantive expressive tool as a means of objectifying—
and thus warranting—his intuitive inference.

The study has thus offered an example of an instructional sequence in which critical aspects
of students’ mathematical learning appear to transpire in the imagistic realm prior both to the
manipulation of symbolic procedures and prior to the performance of logical reasoning. Namely,
Li anchored an image, which had been evoked by a problematized situation, into the material
mathematical model of that situation. Only then did he appropriate the mathematical view of
the situation, which required adopting a new basic object and articulating how it related to the
tacit basic object evoked by the problemaized situation. This process, I believe, constitutes the
core conceptual learning required for a deep understanding of the targeted mathematical notion.
Furthermore, although Li had in practice enacted the mathematical procedure and built the model

19See Abrahamson and Wilensky (2007) on a design-oriented formulation of principles for fostering content learning
as the reconciliation of vying perceptual constructions of mathematical objects.
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SEMIOTIC LEAP 213

prior to anchoring the conceptual blend, it was only once he had made sense of the model
imagistically that he could, retroactively and transitively, make sense of the procedure.

For the most part, the theoretical models cited and discussed in this article each focuses either
on individuals’ intuitive and heuristical resources or on the social context—a context rife with
pre-instituted artifacts, semiotic systems, and implicit goals, beliefs, and norms of discourse—
that the individuals grow to partake in and, ultimately, embody. Yet each of these models alone
did not appear to constitute a perfect match for the data. Rather, I maintain, Li’s learning process
can be fully understood only through the complementary perspectives of cognitive sciences and
sociocultural theory and, in particular, a dialectical perspective (diSessa, 2008b) that accounts for
the cognitive structures intimating students’ uptake of cultural tools. More generally, I submit, an
integrated model would enable us to develop deeper understandings of students’ experiences as
they engage in activities designed to create opportunities for them to learn mathematical concepts.

Toward these ends, I introduced an ontological innovation—the hypothetical construct of
semiotic leap—so as to characterize instances when learners, who are attempting to support an
unsubstantially warranted intuitive assertion, are impelled to appropriate an available mathemat-
ical artifact in their environment as an argumentation means, even before they have completed
constructing a systematic understanding of the mathematical properties of this artifact and its
implications. Thus, semiotic leaps are student-initiated appropriations of perceptually available
or imagistically simulated mathematical structures, and these leaps may potentially serve as
powerful mechanisms of learning.

CONCLUSIONS

Students can construct an understanding for the mathematical procedures they learn to use as
problem-solving tools, even when they initially do not understand the rationale or objective of
these cultural artifacts. This claim per se has been made before (e.g., Sfard, 2002). Yet, as I have
attempted to demonstrate, further work is required in order to explain both the source of students’
knowledge basis that ultimately enables such sense- making and the mechanisms by which these
personal sources become invested in the cultural artifacts. A fuller description of such learning-
through-using processes requires an integrated theoretical perspective encompassing both the
cognitive sciences and sociocultural theory. That is, analyses of artifact-mediated learning as
apprenticeship (Lave & Wenger, 1991), participation in discursive activities (Cobb & Bauersfeld,
1995; Sfard & McClain, 2002), or acculturation into reflective praxis (Radford, 2006a) should be
complemented with attention to individuals’ tacit knowledge that informs their intuitive inferences
(Gelman & Williams, 1998; Polanyi, 1958; Xu & Vashti, 2008; Zhu & Gigerenzer, 2006) and
in particular individuals’ struggle to align these inferences with the cultural formulations they
are encouraged to engage and utilize (Bamberger & diSessa, 2003). That is, individual learning
transpires at the nexus of complex bottom-up and top-down dialectical processes (Clancey, 2008;
diSessa, 1993, 2008b), and the learning sciences would greatly avail by adopting perspectives
and methodologies geared to take on this dialectic complexity. The case study presented in this
article demonstrated the nature of this dialectic complexity and offered one possible route to
addressing the challenges it poses for educational researchers interested in developing theory of
learning and articulating its implications for design, instruction, and professional development.
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214 ABRAHAMSON

A premise of this project is that procedural and conceptual mathematical knowledge should be
intertwined (see Dewey, 1916/1944, on philosophical motivations for deep conceptual understand-
ing; see Freudenthal, 1968, on the intellectual roots of what became the Realistic Mathematics
Education pedagogical framework). Elsewhere (Abrahamson, 2009b), I have borrowed Vygot-
sky’s distinction between “sense” and “meaning” and have emphasized that the effort is to enable
students to build inner sense of mathematical procedures (to “connect,” Wilensky, 1997) not only
to recognize and master the meaning (i.e., the cultural function), of these tools. However, this
distinction between sense and meaning enables me to articulate that this study has demonstrated
the possible contingency of sense-making on meaning-making: dictated processes may be com-
pletely transparent yet make sense as solution procedures only once their end-product is evaluated
as meaningful. In turn, to build meaning for a semiotic artifact, I have argued in this article, is to
come to see the artifact such that its apprehension resonates with intuitive inferences pertaining to
a situation that the artifact is said to model. I have named this moment of apprehension a semiotic
leap, because it is then that the student first constructs cognitive ties between ineffable, tacit
cognitive operations and explicit, mathematical semiotic objects, thus fording the fundamental
epistemological gap between the tacit and the semiotic, the phenomenological and the inscribed.
Inherent to the idea of a leap is that it denotes progress toward a desirable goal (in the sense
of a leap of faith rather than a salto mortale). But having leapt, the learner must still bridge the
epistemological gap between the tacit and the formal. I have implicated abductive reasoning as
the logical operation that triggers the incremental thickening of the requisite collateral knowledge
between the learner and the new mathematical notion.

An auspicious mathematical terrain for the investigation of semiotic leaps, because there the
leap must bridge a more persistent epistemological gap—is that of intensive quantities (Piaget,
1952; J. L. Schwartz, 1988). Intensive quantities, dimension-less magnitudes like ratios, cannot
be meaningfully added to each other the way that extensive quantities, such as distance or mass,
can. From a phenomenological perspective, I submit, some intensive quantities—a : b qualia such
as slope, density, or chance—are privileged domains for which humans have evolved enabling
constraints that underlie their tacit inferences yet thus complicate the educational program of
learning to describe these quantities using the mathematical semiotic system. That is, on the one
hand, “[I]ntuition is generally seen as a primary phenomenon which may be described but which
is not reducible to more elementary components” (Fischbein, 1987, p. ix). Yet, on the other hand,
the requisite mathematical description of a phenomenon inhering an intensive quantity demands
reducing the phenomenon to its elementary components—the a and b in the a : b compound—and
then recomposing this compound (Abrahamson, 2009b). The case study analyzed in this article
demonstrated how a middle-school student could bring to bear tacit mechanisms for seeing chance
in a box of marbles, yet when this irreducible qualia of chance was to be redescribed as an intensive
quantity—that is, as the a:b relation between the favorable events and the entire sample space—
this student encountered great difficulty. Namely, the student struggled to coordinate his tacit
synoptic inference with the analytic mathematical artifact he had constructed. The coordination
was accomplished only once the student was guided to determine a way of perceiving the artifact
such that it evoked the same inference as did the situational embodiment that the artifact was
purportedly representing. This resonance between the multimodal images evoked by the intuitive
perception of the situation and the disciplined perception of its mathematical representation, I be-
lieve, is the moment of meaning making and hence of sense making, of connecting. The abductive
logical process then takes over so as to rationalize the newly hypothesized embodied knowledge.
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IMPLICATIONS FOR INSTRUCTION

Essential to the learning process supporting students’ sense making is that the activity sequence
depart from problematized situations involving phenomenal embodiments of the curricular unit’s
targeted mathematical notions. It is these phenomenal embodiments that first evoke the tacit
processes of inference making. However, the resulting pedagogical dilemma is that students do
not necessarily know how to articulate their inferences using conventional semiotic devices. This
study suggests the potential of designing for semiotic leaps and then orchestrating them.

Designing for Semiotic Leaps

An epistemological commitment of the proposed integrated theoretical perspective, as well as
its concomitant heuristic design framework, is that some mathematical concepts can be learned
through a process of initially “meaningless” tool use that nevertheless is crafted so as to lead
up to students’ abduction of the rules underlying the tool’s function. One effective strategy for
facilitating students’ grounded appropriation of cultural tools is to design mathematical situations
that tap students’ intuitive schemes and then facilitate activities through which students come
to see the tools as semiotic means for warranting their preformulated inferences, even before
these processes are inscribed symbolically. Such guided learning can ultimately be as meaningful
for students as other types of discovery-based processes practiced in constructivist curricula,
because the students experience personal invention of the procedure-as-instrument even in the
midst of learning to perform this procedure per the instructor’s directions. Moreover, such a
learning-through-using process appears to be well aligned with the accomplishment of curricular
objectives—for example, those framed by national standards—namely, developing grounded
fluency with mathematical tools.

Orchestrating Semiotic Leaps

Different situational embodiments of one and the same mathematical concept may elicit dif-
ferent intuitive responses (diSessa & Wagner, 2005), because humans are ecologically adapted
to respond to situations, not to mathematical reifications of these situations (Gigerenzer, 1998).
Ultimately, teachers should help students understand how all these various intuitive responses
they experience vis-à-vis different situational embodiments of a target concept relate to that con-
cept. Yet run-of-the-mill educational programs require curricular materials, for example, student
textbooks and teacher guide-books, and creating these, in turn, necessitates design decisions with
respect to the specific nature of the experiences that teachers are to foster through a structured
activity sequence. Thus, amid the repertory of relevant concept-specific intuitions familiar from
the literature, constructivist designers of mathematical curriculum necessarily make optimization
selections in targeting intuitive responses best conducive to deep learning.

This article reported on a study in which the researcher attempted to help a set of individ-
ual students make sense of a mathematical concept by eliciting their mathematically correct,
conceptually relevant intuitive response and then ushering the students to bring that response
to bear in interpreting a mathematical artifact that supports and enhances that intuition. Along
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216 ABRAHAMSON

the way, untargeted responses, too, were elicited, and so the researcher-cum-tutor had to make
moment-to-moment decisions as to whether these intuitions should be nurtured and applied
or rather only acknowledged and detoured. A teacher, like a creative conductor of a teaming
jazz band, first orchestrates the performance of an improvisatory pedagogical score—be it a
semi-structured clinical interview, or, later, a lesson activity sequence—and then, through cueing
students’ desirable intuitions and quieting undesirable ones, marshals the emergence, conver-
gence, and merging of the ensemble of tacit intuitions and learned procedures into resonant,
dynamical stability.

Orchestrating Semiotic Leaps Toward the Binomial

Specifically for the topic of basic probability, this study constitutes empirical support for the
conjecture that students’ intuitive expectation of likelihoods in experiments with random genera-
tors is qualitatively in accordance with mathematics and, moreover, that this intuition can ground
the mathematical procedure of combinatorial analysis by which the expanded sample space is
generated and investigated. Thus, given appropriate design, the intuitive sense of likelihood,
which Tversky and Kahneman (1974) decry as a bias-prone heuristic, is in fact a useful cognitive
resource. Specifically, empirical findings of erroneous inferences regarding the comparison of
equiprobable samples on the basis of their assumed likelihoods demonstrate not faulty inference
making, I wager. Instead, these inferences are due to non-normative categorization of the samples
as orderless aggregate events rather than as ordered elemental events. Given appropriate design,
however, wherein students’ initial inferences agree with mathematical theory, the intuitive sense
of likelihood can and should be embraced in the teaching and learning of the binomial.

I thus join other researchers of probability learning (e.g., see in Shaughnessy, 2003) in a quest
for designs that work with students’ intuition rather than quell them. In fact, the current study
suggests pedagogical advantages of setting up conditions that encourage students to draw on
intuitive judgments, just as long as those initial inferences are aligned with mathematical theory.
The particular design employed in this study appears to create opportunities for students to
effectively approach the targeted content. In particular, the marbles-box activity enables students
to “list” the experiment’s sample space as the assembly of all possible iconic configurations of
the 2-by-2 scoop, and the resulting imagistic resonance between the random generator and its
sample space eschews the cognitive burden of interpreting symbolic notation and thus facilitates
a honing of the central issues that must be addressed. Moreover, the tangibility and mobility of
the sample-space cards readily enable reconfiguration of the space into formats that accentuate
its parsing into event aggregates and thus render the space better conducive for the emergence
and performance of comparisons vital for evoking the targeted inferences.20

20I have been repeatedly asked by leading scholars why the four-marbles scoop is structured in 2-by-2 form rather than
4-by-1, given that the normative mathematical listing of a sample space is as linear strings, for example, “HHTH,” and that
we may wish to scaffold students toward that normative form. My prosaic reply is that the 2-by-2 configuration is a heritage
of the square samples used in our computer-based statistics activity for networked classrooms (S.A.M.P.L.E.R., Statistics
As Multi-Participant Learning-Environment Resource, Abrahamson & Wilensky, 2004b; Abrahamson & Wilensky, 2007),
and we wished to create a uniform format across our curricular material, ProbLab (Abrahamson, Janusz et al., 2006;
Abrahamson & Wilensky, 2002). Auspiciously, though, when square samples are rotated as a form of combinatorial
expansion, they produce a set of four permutations as compared to only two that would be produced by rotating a card
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SEMIOTIC LEAP 217

In order to enable students to sustain and leverage these apparently useful inferences through-
out a structured activity sequence, further conditions may be imposed on the activity so as to
initially arrest students’ impulse to experiment with an available random device, at least until the
sample space has been constructed, analyzed, and coordinated with the inferences. This sequenc-
ing would defer to a later stage in the design competing inferences that come from explorative
data analysis and potentially interfere with the crucial population-to-sample inference. That is,
students are “liable” to base expectations not on the global features of the mechanism but upon
a set of available experimental outcomes resulting from several introductory trial draws from the
random device. In like vein, the study demonstrates that, on the basis of their intuitive expectations
alone, students can go quite a way toward understanding core notions of classicist probability,
even before actual experiments are conducted. From that perspective, the intuitive and mathe-
matical expectations could be regarded as triangulations, which subsequent random experiments
validate.

The model of learning-through-using that I have put forth, if valid, would support the educa-
tional design heuristic by which didactical mathematical situations should tap students’ intuitive
knowledge—that is, learning materials should be designed with an eye on the enabling con-
straints of perception and reasoning (Gelman & Williams, 1998; Gigerenzer, 1998; Gigerenzer
& Brighton, 2009; Smith et al., 1993)—so as to accommodate students’ intuitive schemata, even
before they learn to perform the mathematical counterparts of these automatic processes; even
before the students come to appreciate how mathematical procedures enhance and elaborate
intuitive reasoning so as to meet the demands of participating in the social complex.

ACKNOWLEDGMENTS

This article builds on several conference papers (Abrahamson, 2008a, 2008b; Abrahamson et al.,
2008; Abrahamson & Cendak, 2006). The Seeing Chance project was supported by a National
Academy of Education/Spencer Postdoctoral Fellowship. I am grateful to the students who
volunteered to participate in this study and to the school principal and staff for opening their
doors to this collaboration. A big thanks to Jeanne Bamberger, Allan Collins, Andy diSessa, Maria
Droujkova, Alan Schoenfeld, Tobin White, and Betina Zolkower for commenting on earlier drafts
of this article—shortcomings of this article reflect my failure to heed their advice. Thank you
Cliff Konold for helping me be more precise and consistent with my mathematical terminology.
Special thanks to members of the Center for Connected Learning and Computer-Based Modeling
(Uri Wilensky, Director) at Northwestern University who assisted in implementing my design,
and especially Paulo Blikstein, for his help in engineering and producing my design of the
marbles scooper. At UC Berkeley, thank you to members of the Embodied Design Research
Laboratory in the Graduate School of Education, including participants in the Undergraduate
Research Apprenticeship Program, and to students of the graduate course Learning Chance.
I wish to extend my gratitude to the prior and current editors in chief and executive editors

representing a linear scoop. Notwithstanding, a comparison of the learning affordances of square and linear scoops would
make for an intriguing study. In any case, a combinations-tower format utilizing linearly configured compound events
has been adopted by the Model Chance project and thus integrated into an experimental version of the TinkerPlots
computer-based learning environment (Cliff Konold, personal communication, January 22, 2007).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
1
:
1
4
 
7
 
J
u
l
y
 
2
0
0
9



218 ABRAHAMSON

of Cognition and Instruction as well as Susan Jurow and several anonymous reviewers for their
highly effective comments. Finally, I thank Michael Monroe for “Simple Life” and “Wintersong,”
pensive musical art that inspired much of the aforementioned search for coherence.

REFERENCES

Abrahamson, D. (2004). Embodied spatial articulation: A gesture perspective on student negotiation between kinesthetic
schemas and epistemic forms in learning mathematics. In D. E. McDougall & J. A. Ross (Eds.), Proceedings of
the Twenty-Sixth Annual Meeting of the North American Chapter of the International Group for the Psychology of
Mathematics Education (Vol. 2, pp. 791–797). Toronto, Ontario: Preney.

Abrahamson, D. (2006a). Mathematical representations as conceptual composites: Implications for design. In S. Alatorre,
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