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INTRODUCTION 
Complexity sciences and agent-based modeling has been increasingly used by scientists to study 

a wide range of phenomena such as the interactions of species in an ecosystem, the collisions of 

molecules in a chemical reaction, or the food-gathering behavior of insects (Bonabeau, 1999; 

Wilensky & Reisman, 2006). Such phenomena, in which the elements within the system 

(molecules, or ants) have multiple behaviors and a large number of interaction patterns, have 

been termed complex and are collectively studied in a relatively young interdisciplinary field 

called complex systems or complexity studies (Holland, 1995). Typical of complex phenomena is 

that the cumulative (‘aggregate’) patterns or behaviors at the macro level are not premeditated 

or directly actuated by any of the “lower-level” micro elements. For example, flocking birds do 

not intend to construct an arrow-shaped structure (Figure 1), or molecules in a gas are not aware 

of the Maxwell-Boltzmann distribution. Rather, each element (“agent”) follows its local rules, 

and the overall pattern arises as epiphenomenal to these multiple local behaviors—the overall 

pattern emerges. In the mid-nineties, researchers started to realize that agent-based modeling 

could have a significant impact in education (Resnick & Wilensky, 1993; Wilensky & Resnick, 

1995). For instance, to study the behavior of a chemical reaction, the student would observe and 

articulate only at the behavior of individual molecules — the chemical reaction is construed as 

emerging from the myriad interactions of these molecular “agents.” Once the modeler assigns 

agents their local, “micro” rules, the model can be set into motion and the modeler can watch 

the overall patterns that emerge. 
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(b) dynamics—the computational power of ABM enables the researcher to mobilize an 

otherwise static list of conjectured behaviors and witness any group-level patterns that 

may enfold through multiple interactions between the agents who implement these 

conjectured behaviors; 

(c) emergence—investigate intelligence as a collection of emergent, decentralized 

behaviors; 

(d) intra/inter-disciplinary collaboration—the lingua franca of ABM enables 

researchers who otherwise use different frameworks, terminology, and methodologies to 

understand and critique each others’ theory and even challenge or improve the theory by 

modifying and/or extending the computational procedures that underlie the model. 

(e) making models accessible—various authors established the importance of 

practitioners’ mental models of the learning process itself as determinant for their 

classroom action (Strauss, 1993; Strauss & Shilony, 1994). Therefore, using computer 

models to conduct research in education and make those models approachable and 

accessible to teachers could influence and transform their everyday work. 

Additionally, ABM could address long-standing limitations of current methodological 

paradigms. First, experiments with human subjects cannot be indefinitely re-run, so replicating 

findings or exploring a wide parameter space are costly and oftentimes impossible tasks. Once 

the classroom data is collected, at most researchers can revisit the videotapes and 

transcriptions, but never re-live the situations. Second, as we move towards theories that 

conceptualize learning as a dynamic and adaptive phenomenon, the traditional media of 

scientific discourse—static linear text—becomes limited in its capacity to express these theories 

(Abrahamson & Wilensky, 2005; Blikstein, Abrahamson, & Wilensky, 2006). Thirdly, tools such 

as fMRIs cannot yet offer the speed and resolution needed to evaluate any complex learning 

process close to what we would find in a classroom. Lastly, ethnographic or micro-genetic 

methods oftentimes cannot offer a solid, “runnable”, generalizable, task-independent account on 

how humans learn. 

The ultimate goal of using agent-based simulation to explore human learning is to enable 

researchers to generalize and play “what-if” scenarios departing from in-depth interviews and 

ethnographic data, as well as investigate internal cognitive structures departing from external, 

observed behaviors, in other words, ABM could bridge quantitative and qualitative methods in a 

unique way. The two experimental obstacles mentioned above (the limitations of tools such as 

fMRI and qualitative methods), as we will explain throughout this paper, could be overcome by 

employing a variable ‘grain size’ for delimitating the cognitive tasks, together with simple 
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interaction rules, within a coherent theoretical and empirical framework. Over the last years, 

indeed, we have jumpstarted this research agenda in several topics and fields: 

(a) Theories of cognitive development, namely, the piagetian vs. vygotskyan perspectives 

(Abrahamson & Wilensky, 2005). 

(b) An agent-based explanatory model for a classical piagetian task (the conservation 

experiment), based on Minsky and Papert’s model (Minsky, 1986), and paired with data 

(bifocal modeling, Blikstein & Wilensky, 2006b) from interviews (Blikstein, Abrahamson 

& Wilensky, 2006). 

(c) Collaboration and group work in classrooms, juxtaposing our simulation with real 

classroom data (Abrahamson, Blikstein & Wilensky, 2007). 

(d) The emergence and feasibility of multiple epistemological resources (Blikstein, & 

Wilensky, 2006, 2007). 

(e) A general theory and ontology for models of cognition based on agent-based modeling 

and network theory (Blikstein, & Wilensky, 2006, 2007). 

Our work builds on previous seminal contributions to field, in which theoretical models of 

cognition were implemented in the form of computer programs in attempt to predict human 

reasoning (Newell & Simon, 1972; Rose & Fischer, 1999), in tasks such as shape classifications 

(Hummel & Biederman, 1992), language acquisition (Goldman & Varma, 1995), and memory 

(Anderson, Bothell, Lebiere, & Matessa, 1998), and other more general-purpose models 

(Anderson, 1983; Anderson & Bellezza, 1993; Anderson & Lebiere, 1998; Just & Carpenter, 

1992; Polk & Rosenbloom, 1994). Our design, however, differs from extant approaches in two 

fundamental ways: 

1. Grain Size: Selecting a unit of analysis toward bridging the micro and 

macro perspective on learning, and quantitative and qualitative 

perspectives—Those theories, slicing human learning into diminutive pieces, when 

reintegrated into the larger context of classroom learning, could not account for any 

meaningful macro-cognitive phenomena. 

2. Accessibility: Democratizing modeling-based research—Most 

computational theories of mind were so mathematically complex that only 

specialized researchers could discuss them. The intricacy and language of these 

theoretical models rendered them incomprehensible for teachers, educators, and 

policymakers. Conversely, the computer language with which we have developed the 

models, NetLogo (Wilensky, 1999), was built from the ground up for non-

programmers, so that users can not only run simulations, but modify their internal 
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rules and compare scenarios. Our models, too, were carefully conceived to follow 

established models for learning. 

In what follows, we will present and discuss two examples of this work 

Case study 1: The “Society of More” Model 
Conservation of volume is probably the best known Piagetian experiment. It has been 

extensively studied and reproduced over the past decades (Piaget, Gruber, & Vonèche, 1977). 

Minsky & Papert (1986) proposed a computational algorithm to account for children’s responses 

during this experiment. It is based on their construct of the intelligent mind as an emergent 

phenomenon, which grows out of the interaction of non-intelligent cognitive agents. Minsky’s 

theory has been particularly influential for overcoming the ‘homunculus’ paradox: if intelligent 

behavior is controlled by more primitive intelligent behaviors, we get enmeshed in a recursive 

explanation which cannot ultimately account for a reasonable theory of the mind. Minsky, 

therefore, insists on using agents that are essentially non-intelligent and obey simple rules— 

intelligence, therefore, emerges from these interactions.  

The simplicity of Minsky’s model is, actually, its main strength – and a perfect fit for the agent-

based modeling paradigm. The first important principle in his model is that agents might 

conflict. For example, at a given time, a child might have Eat, Play and Sleep as predominant 

agents. Play could have subagents, such as Play-with-blocks and Play-with-animals. If both of 

these subagents are equally aroused (in other words, the child is equally attracted to both 

activities), the upper agent, Play, is paralyzed. Then a second important principle comes into 

play: non-compromise. The longer an agent stays in conflict, undecided, the weaker it gets 

compared to its competitors. If the conflict within Play is sustained long enough, its competitors 

will take control (in this case, Eat or Sleep). 

Minsky’s fundamental rule is, thus: “whenever in conflict, a mental entity cannot (or takes 

longer to) decide”. Although relatively simple, this model, as we will see, is surprisingly powerful 

and opens up many interesting possibilities for investigation, some of which will be described in 

the paper. Minsky’s and Papert’s model of Piagetian experiments stresses the importance of 

structure to cognitive evolution, especially its reorganization (the ‘Papert Principle’). Within the 

context of the conservation task, younger children would have ‘one-level’ priority-based 

structures: one aspect would always be more dominant (tall would always take priority over thin 

and over confined - see Figure 1) and compensation, which requires a two-level structure, is thus 

inexistent. Minsky suggests that, as some perceptual aspects would be more present in the 
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improvement of the computer simulation of a theoretical model, such as Minsky’s model: The 

data sensitize us to the crucial components and dimensions of the interactions and to the nature 

of the transformations.  

Conventional “paper and pencil” representations of Piagetian structures might miss some of the 

dynamic factors in play. For example, we were able to identify in several children some 

‘embryonic’ agents, which were present in just part of the interaction. Child 2, for instance, 

would oscillate between a “re-joinable” and a “conserved-mass” explanation in many 

interactions.  Without a probabilistic approach, we would be obliged to just assume that those 

children were in a transitional stage. With the computer representation, we could actually 

calculate the number of times that different embryonic agents are aroused, and estimate the 

developmental stage of the child. This data could then be fed into the computer model for 

further confirmation – we could even envision, for future work, simulations which could predict 

the appearance and evolution of embryonic explanations. 

A natural and promising path for this work is to evolve structures automatically. We suggested 

earlier that the dynamics of this simulation is such that favorable outcomes would be reinforced. 

As we observed in the experiments, random reconnections of agents do not render random 

results—structure matters. The mechanism which we demonstrated shows that there is a higher 

probability for related agents (“long” and “thin”) to group together under one particular agent – 

this is the configuration that delivers the best performance. One can imagine that, along many 

years of cognitive development in the world, the child will group some sensorial and cognitive 

experiences into certain categories: i.e., “thin and long belong to appearance”, “taken-away and 

spilled relate to history of the transformation”. What Minsky states, and we verified, is that the 

actual content of such agents less irrelevant than it’s placement within the structure, if they are 

under a closely related agent. Thus, the categorization process itself emergently generates 

intelligent behavior, without any interference from an external “intelligent” entity. This appears 

to be an indication that the ‘Society of Mind’ framework could be used with predictive power in 

developmental psychology, especially when coupled with clinical interview data. 

Case study 2: Manifold epistemological resources 

Traditional research on personal epistemologies (Hofer & Pintrich, 2002) has conceptualized 

them as stable, constant beliefs. However, evidence of variability in student epistemologies 

suggests the need for more complex models (diSessa, 1993; Hammer & Elby, 2002). The 

activation of students’ different epistemological resources could depend on context, as shown by 
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Rosenberg, Hammer, & Phelan (2006). In their case study, a brief epistemological intervention 

by an 8th-grade science teacher led to students’ abrupt shift from one epistemological ‘mode’ to 

another. Rosenberg et al. narrative tells the story of a group of students who were given the task 

of explaining the Rock Cycle. For the first few minutes, before the teacher’s intervention, they 

fail to engage in any productive work or to construct a coherent explanation of the Rock Cycle. 

Their explanations are fragmented, use the wrong vocabulary, and do not survive even simple 

logical inference. Rosenberg el at. state that the reason is epistemological, and that 

“They are treating knowledge as comprised of isolated, simple pieces of information 

expressed with specific vocabulary and provided by authority.” Rosenberg, Hammer, & 

Phelan (2006), pp. 270. 

The authors provide three pieces of evidence for this hypothesis: (i) students organize their 

efforts around retrieving information from worksheets; (ii) they focus on terminology, and (iii) 

students combine information and construct sentences to present a formal ordering rather than 

a causal sequence. But the narrative goes on. Realizing the ongoing failure, the teacher stops the 

activity, and tells students: 

“So, I want to start with what you know, not with what the paper says.” 

Abruptly, students change their ways of engaging in the activity. They immediately start to focus 

on elements of the Rock Cycle that they understand and rebuild the story from there – in few 

minutes, one of the students was able to come up with a reasonable explanation:  

“OK, the volcano erupts, and lava comes out. Lava cools and makes igneous rock. Rain 

and wind cause small pieces of rock to break off. Sediments form, and rain and wind 

carry it away, and rain and wind slow down and deposit sediments and this happens 

over and over again to form layers.” Rosenberg, Hammer, & Phelan (2006), pp. 274 

Particularly impressing is how students, departing from a single element of the story (“Lava 

comes out”), could correctly connect all the other pieces of the explanation. Even though the 

“Lava comes out” piece was the first to be mentioned, they realized that for lava to come out, the 

volcano has to erupt; similarly, if the lava comes out and is hot, it has to cool down. 

Concatenating pieces of information making sense of the connection rules was crucial for 

students to generate a coherent explanation, resorting even less times to their worksheets than 

in the previous half of the narrative. 

We set out to employ ABM to model what took place during those 15 minutes, answering two 

research questions concerning the abrupt epistemological shift observed: 
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identify viable connection between two content pieces) on the X axis. Explanation comprised of few content pieces 

are relatively insensitive to the connectors’ training (sentence size 2, blue line), whereas the drop is more dramatic 

when explanations are longer (sentence size 3, red line). 

A striking result is that, while the impact of increasing values of connector strength is linear for 

sentence size 2, it is roughly exponential for sentence size 3 (the best fit for the curve was 

exponential, but even a linear fit would have an much higher angular coefficient). This suggests 

that, for assembling ‘simple’ content, the gain that students get from improved connecting 

skills is much lower than when there are struggling with complex knowledge. 

Again, this finding seems fitting with Rosenberg et al. narrative. Even in the first moment of the 

narrative, when students are trying to assemble explanations based on worksheets and other 

authority-based sources, with more consideration for formal ordering and a quasi-random 

approach, they were able to assemble a number of “sentence-size 2” explanations. The following 

four examples were extracted from the transcriptions of students’ dialogues: 

 

 
However, in that first part of the narrative, students were never able to form “sentence size 3” 

explanations, which would require an extra step: connecting a relatively simple pair of pieces to 

a third piece, evaluating all possible pieces for their fit. In the second part of the narrative, after 

just some minutes, by trying to ‘enlarge’ their explanation making sense of the connection 

An igneous rock forms weathering occurs

Igneous rock it forms from magma lava

The deposit goes 
through erosion

settles at the 
bottom of the sea

sediment goes to the 
bottom of the ocean

then it compresses to 
form...
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Conclusions 
Along the examples of this paper, we tried to pair our model data with interview or classroom 

data (Bifocal Modeling, Blikstein & Wilensky, 2006). The results from the “Society of More” 

study showed that conventional “paper and pencil” representations of Piagetian structures 

might miss some of the dynamic factors in play, such as ‘embryonic’ cognitive changes. Without 

a probabilistic approach, we would be obliged to just assume that those children were in a 

transitional stage, but with the computer representation, we could actually calculate the number 

of times that different embryonic agents are aroused, and estimate the developmental stage of 

the child. Another promising path is to evolve structures automatically, since favorable 

outcomes would be reinforced in the model. As we observed in the experiments, random 

reconnections of agents do not render random results—structure matters. The mechanism 

which we demonstrated shows that there is a higher probability for related agents (“long” and 

“thin”) to group together under one particular agent – this is the configuration that delivers the 

best performance. Therefore, this confirms what Minsky states: the categorization process itself 

emergently generates intelligent behavior, without any interference from an external 

“intelligent” entity.  

In our second case study, we searched for instances that would resemble what Rosenberg et al. 

described in their classroom observations. The model seems to validate key elements of those 

observations: 

1) Students’ failure in the first half of the narrative was epistemological, and not due to lacking 

memorizing or information retrieving skills. 

2) The fundamental mathematical basis of the model, from which all other behaviors emerge, is 

that brute-force methods are fast for short sequences, but for long sequences, as the 

combinatorial space increases exponentially, their performance drops accordingly. In the high 

connector strength mode, however, once the connector is trained, the size of the sentence has a 

much lesser impact, since the evaluative rule of the connector filters out the combinatorial 

space, and one single successful connection (given an unlimited supply of pieces), will take the 

exact same computational time for any sentence size. This seems to be the case in the classroom, 

where students could assemble long explanations quickly, once they were in a ‘high connector 

strength’ mode. 

3) In this simulated environment, we were able to verify that for learning intricate content (i.e., 

assembling long explanations), there is a significant, non-linear, payoff to invest in “sense-
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making skills” (connector strength) as opposed to “memorizing skills” (retrieving speed). For 

simple content (involving the connection of 2 content pieces), however, sheer memorizing can 

even outperform “sense-making skills”. The data shows that the payoff of improved connector 

strength only manifests itself after CS 80%.  

4) Abrupt, non-linear shifts in student understanding are indeed possible even within very short 

periods of time, by activating different cognitive resources. If we consider “previous knowledge” 

as a strong connector, it follows that its activation following the teacher intervention could cause 

a sudden change in student performance. 

Both cases studies show that, this work, although still in its infancy, could potentially have broad 

implications for the practice of curricular designers, teachers, and policy makers – by offering 

researchers “glass box,” accessible tools to simulate, model and test hypothesis about human 

cognition in social contexts, as well as to pair model data with real classroom data. In particular, 

many of the ontologies and key ideas that are currently used on the Complexity Sciences to 

investigate  abroad set of phenomena – from scale-free networks to non-linear behavior – were 

show to be useful analysis tools for better understanding human cognition, either as quantitative 

data confirming existing models, or as thought experiments and hypothesis-generators to 

advance theory building. The fact that agent-based model can be built from simple behaviors 

derived from qualitative analysis, but can generate quantitative data, is also a promising 

methodological tool for cognitive scientists. 
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