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Abstract: We discuss a brief transcribed excerpt from a task-based interview with Li, an 
11.5-year-old participant in a design-based research study of probabilistic cognition 
pertaining to the binomial. We investigate whether and how Li made sense of the 
behavior of an unfamiliar computer-based artifact—the diminishing proportional impact 
of successive random samples on the overall shape of a dynamically accumulating 
outcome distribution. Li constructed two informal analogical situations as multimodal 
discursive means of concretizing, elaborating, and communicating his emerging 
understanding of the artifact’s behavior. These non-routine utterances shifted the 
discourse to an explicitly embodied, imagistic space bearing unique affordances for 
negotiated epistemic syntheses of phenomenological and technological constructions of 
quantitative relations. Microgenetic analysis suggests that Li’s presymbolic notion was 
not a static magnitude but an intensive-quantity “action–object”; he subsequently 
unpacked this dynamical “a/b” qualia into its constitutive “a” and “b” elements. We 
reflect on implications of this counter-curricular sequence for educational design. 

 
Background: Student Analogy as Researcher Opportunity 
We are interested in the phenomenon of mathematics learning. We conceptualize mathematics learning as 
the process in which an individual builds meaning for mathematical artifacts, such as notions, semiotic 
devices, and procedures. We research this learning process in an attempt to understand what it is that 
students do when they build meaning for mathematical artifacts, what teachers do to support this process, 
and what instructional materials may best serve this process. In the current study, we examine one student’s 
metaphorical reasoning as he attempts to construct meaning for the behavior of an unfamiliar mathematical 
artifact. In particular, we seek to determine the student’s initial ontology of the artifact as indicating his pre-
articulated phenomenological resources that could plausibly serve as proto-mathematical. So doing, we 
question the warrant of some epistemological assumptions underlying traditional mathematics curriculum.  

Our comments in this essentially theoretical paper should be taken as no more than conjectural. 
Nevertheless, an appeal of the paper would be the potentially effective theoretical fit, and hence 
methodological fit, between the dynamical nature of the particular artifact at the center of the student’s 
inquiry and our interest in the dynamics of multimodal mathematical reasoning. This fit enables us to 
elaborate on Phenomenology tenets and Learning-Sciences conjectures regarding the precedence of 
unreflective perception of action over analytic construction of concepts, as we investigate the purchase of 
these conjectures on our empirical data. Ultimately, we hope to draw tentative conclusions aligned with 
parallel research efforts so as to offer an intellectual space for conversation informing future studies.  

Probability—the mathematical content selected for this study—is amenable for our investigation 
of tension between phenomenological and cultural constructions of situations and artifacts. That is, the 
unique epistemological “mode” created by situations involving uncertainty, and in particular the challenges 
of articulating such uncertainty symbolically, appears to impel students to seek non-symbolical discursive 
genres as means of expressing their intuitive quantitative reasoning (e.g., Rubin & Hammerman, 2007). 
The consequent protracted discursive interim from the embodied to the symbolical is conducive for 
examining the microgenesis of meaning. Namely, we conjecture that the metaphors generated by this 
study’s focal student served him as more than vehicles for communicating “ready-made” coherent notions. 
Rather, we believe that the cognitive–discursive actions of evoking and “grammarizing” these metaphors 
were instrumental for the student’s initial articulation of his reasoning. If this conjecture bears out through 
further research, it would present a number of implications for mathematics-education theory and practice. 
In terms of theory, we would suggest that idiosyncratic metaphors could enable diverse individual students 
to ground challenging mathematical constructs in their prior quantitative experiences, both formal and 
informal. In terms of practice, we would encourage teachers to cultivate socio-mathematical classroom 
norms of discourse in which such metaphorical constructions are approved and possibly even solicited.  
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Metaphor as a Unique Semiotic Means of Objectification 
When students encounter a new situation and attempt to determine what it is, they are tacitly attempting to 
determine what it is like. This reasoning process is usually opaque to others as well as, perhaps, to the 
students. Usually, it is only when the students subsequently respond in non-normative ways to problem 
situations that we assume that their underlying conceptualizations of the situation are non-normative. By 
stating their metaphors explicitly, though, students create opportunities to reflect more concretely on their 
emerging conceptual system for a given mathematical subject matter content as well as to receive targeted 
formative assessment and guidance in learning this content. We conjecture that instructional discourse 
around metaphor plays a unique role in students’ bridging between tacit and cultural constructions of 
quantitative situations. Through analyzing a student’s metaphorical constructions, we hope to promote 
research into this conjecture. Our proposal to endorse metaphorical reasoning as central to the practice of 
mathematicians and, hence, of mathematics-education researchers, agrees with recent emerging interest in 
“embodied” or “multimodal” forms of quantitative reasoning (Abrahamson, 2009b; Edwards, Radford, & 
Arzarello, 2009; Lemke, 1998; Presmeg, 2006) as well as with converging testimonies and theory 
pertaining to the explorative and desultory process of mathematical learning and discovery (Lakatos, 1976; 
Schoenfeld, 1991; Thompson, 1993). Furthermore, demonstrating pivotal roles of multimodal mathematical 
reasoning would add to the ongoing conversation among cognitive scientists regarding a looming paradigm 
shift from amodal to modal conceptualization of human reasoning (see Barsalou, 2008; but cf. Dove, 2009). 

We view mathematical learning as a dialogic, distributed, reflexive, and emergent process. 
Students learn by building personal meanings for mathematical artifacts. They do so by appropriating these 
artifacts as significant means for multimodal semiotic objectification of their presymbolic notions. It is thus 
that designed and guided participation in artifact-based social activities mediates disciplinary knowledge as 
internalized discursive praxis (Mariotti, 2009; Radford, 2008; Sfard, 2002). And yet, students’ naïve 
presymbolic notions, judgments, implicit heuristics, and inferences for quantitative situations are 
sometimes more sophisticated than they can initially express (e.g., Gelman & Williams, 1998), particularly 
when students who are not yet fluent in proportional constructs attempt to express notions of perceptually 
privileged intensive quantities (Piaget, 1952; Stroup, 2002). Thus, it is important that educators create 
opportunities for students to avail of their capacity for pre-articulated quantitative reasoning, such as by 
making available in the learning environment mathematical artifacts that accord with structure information 
students tacitly seek (Abrahamson, 2009b). In this negotiation of meanings for mathematical artifacts 
(Cobb & Bauersfeld, 1995), metaphor serves as a powerful discursive engagement, because it 
explicitizes—for the student, teacher, classroom, and researcher—the student’s (idiosyncratic) reasoning. 

That said, for this study we do not take a philosophical or cognitive position as to how students 
first develop these metaphors or how they evoke them in situ as inferential discursive mechanisms (cf. 
diSessa, 1983; Halliday, 1993; Lakoff & Núñez, 2000; see in Ortony, 1993). Instead, we treat the evocation 
of metaphor at a larger analytic granularity, as a species of abductive inference amid encounter with a novel 
problem (e.g., Prawat, 1999). Moreover, we are committed to framing students’ reasoning as situated not in 
a solipsistic void but as an integral aspect of discourse (Sfard, 2002). Particularly, we are inspired by 
Radford’s (e.g., 2008) view of mathematics learning as guided discursive processes in which students 
appropriate semiotic artifacts as means for objectifying their presymbolic notions. From this semiotic–
cultural perspective, we wish to examine the hypothesis that metaphor, too, is a means of objectification 
and to explore its unique properties, roles, and prospects within institutionalized practices of mathematical 
learning. We propose that students recall personal experiential gestalts as a means of reifying the emerging 
coherence they sense in mathematical artifacts yet initially lack formal constructs or vocabulary to express. 
 
Source Data and Research Questions 
The transcribed excerpt that constitutes the source data for our study is from an interview with Li, an 11.5 
year-old male student ranked by his mathematics teachers as high-achieving. Li was one of 28 Grades 4–6 
study participants from a private suburban K–8 school in the greater San Francisco East Bay area. The 
context of these 1-hr. interviews was a design-based research study of late-elementary and middle-school 
students’ intuitive notions pertaining to the mathematical study of probability as well as the potential roles 
that a set of mixed-media technologies of our design could play in enabling these students to leverage any 
such naïve notions toward understanding mathematical formulations of random phenomena, specifically 
the binomial. Using a flexible protocol, we conducted semi-structured clinical interviews (Ginsburg, 1997). 
The sessions were videotaped for subsequent analysis, and selected episodes were transcribed. The research 



team employed collaborative qualitative microgenetic analysis techniques (Siegler & Crowley, 1991) as 
well as grounded theory (Glaser & Strauss, 1967), through which emergent insights were articulated and 
iteratively crosschecked against the entire data corpus as a means of consolidating, investigating, and 
developing new constructs (diSessa & Cobb, 2004). Instances of student elaborate metaphorical reasoning 
were extremely rare (only four identified within a total of 26 hours of data) yet appear to be uniquely 
informative. In particular, students’ gestures therein enable us to speculate on their conceptualizations of  
proportionality and probability (e.g., Alibali, Bassok, Olseth, Syc, & Goldin-Meadow, 1999). 

Figure 1 overviews four central objects and target artifacts that were used, constructed, and/or 
automatically generated during the interview. The marbles scooper is used to draw a sample of exactly four 
ordered marbles from an “urn” of mixed green and blue marbles (see Figure 1a). This hypergeometric 
experiment—during each 4-marbles sample draw, marbles are not replaced—approximates the binomial 
due to the ratio of n (4 marbles) to the content of the urn (hundreds of marbles). In the interview, we first 
ask the participant to guess what would be the experimental results of scooping. Next, the participant is 
guided to use crayons and a pile of stock-paper cards each bearing a blank 2-by-2 matrix (Figure 1b), so as 
to create the sample space of the experiment and assemble it in the form of the combinations tower (see 
Figure 1c). Later, the dyad engages computer-based simulations of the same experiment (e.g., see interface 
fragment—a histogram—in Figure 1d). Here, we examine one student’s reaction to one feature of one 
artifact—Li’s reaction to the diminishing proportional impact of samples in the “4-Blocks” simulation.(1) 

 

      
a. b. c.    d. 

Figure 1. Materials used in the study—theoretical and empirical embodiments of the 2-by-2 mathematical 
object: (a) The marbles scooper; (b) a template for performing combinatorial analysis; (c) the combinations 

tower—a distributed sample space of the marbles-scooping experiment; and (d) an actual experimental 
outcome distribution produced by “4-Blocks,” a computer-based simulation of this probability experiment. 

 

The computer-based model “4-Blocks,” built in NetLogo (Wilensky, 1999), simulates the 
marbles-box probability experiment. 4-Blocks includes a virtual 2-by-2 array (see Figure 2, next page). 
When a virtual sample is taken, each of the four cells in this array is randomly assigned either green or blue 
coloration. For example, the sample may be three green and one blue cells in any of the four possible orders 
(hence, “3g1b”). The model computes the number of green cells in the array, such as 3, and this value is 
supplemented to a list (that by default is not seen by the user). Immediately, the interface reflects this new 
result by “bumping up” the appropriate histogram column, such as the second-from-right column, by a 
vertical extent commensurate with one unit. A feature of 4-Blocks is that its histogram updates dynamically 
even as the experiment is running. (To interact with the 4-Blocks model as well as to view the video clip 
discussed herein, visit http://edrl.berkeley.edu/publications/conferences/ICLS/Abrahamson-ICLS2010/.) 

The vertical extent of a unit is dynamically calibrated to the histogram’s maximum y-axis value 
(e.g., this y-value is 43, in Figure 2). That is, the histogram has an “autoplot” feature: when a category 
column “grows” such that it is about to exceed the maximum y-value, this value increases by one unit so as 
to accommodate the impending growth. The column thus remains as tall as it was, “glued” to the top of the 
histogram frame, while other columns appear to sag down a unit. Consequently, as the simulation is 
running, the vertical extent of a single unit keeps diminishing. Thus, when the maximum y-value is 10 (the 
default initial value), a unit is 1/10 of the height of the frame, resulting in the perception of a major upward 
jolt on the screen when a sample is taken. In Figure 2, a unit would be smaller, at 1/43 of the height. When 
the maximum y-value is relatively large, such as 1,000, a unit is only 1/1,000 of the histogram, resulting in 
a minute perceptual change. Moreover, at 10,000, an upward motion may demand finer calibration than the 
pixels could accommodate, so that very often the columns would not register any perceivable change at all. 



 
Figure 2. The 4-Blocks NetLogo simulation of the marbles-box probability experiment after 100 samples. 

 

This phenomenon—the diminishing perceptual impact of samples as the experiment runs—is a 
potentially useful feature of the NetLogo modeling-and-simulation environment, because of its inherent 
capacity to gradually shift the user’s attention away from the impact of each haphazard sample and toward 
the distribution gestalt, which the user might thus objectify as an aggregate property of the simulated 
phenomenon (Wilensky, 1997). Moreover, the absence of numerals along the histogram’s x- and y-axes 
appears to impact the user’s primary construction of relations among the histogram columns: rather than 
constructing these relations as mediated through symbolically notated absolute values and calculated 
differences among them, the user can construct them proportionately based on immediate perceptions of 
relative heights and/or areas. Thus, in each and every long-term run of the simulation, the user may 
experience opportunities to witness and reflect on the gradual yet ineluctable emergence of the distribution 
shape, such as the 1-4-6-4-1 shape of the marbles-scooping binomial experiment set at p = .5 (Figure 1d); 
with guidance, users may be able to construe this shape as objectifying their presymbolic sense of the 
phenomenon’s aggregate characteristics (e.g., the expected plurality of 2g2b, see Abrahamson, 2009b).  

By and large, such was the case with all our 28 participants, including Li. Yet how would Li make 
sense of the histogram? In particular, would Li perceive the impact of each sample upon the distribution as 
proportional to the quantity of aggregated outcomes? If so, what resources might this student, who has not 
studied ratio-and-proportion formally, bring to bear in making sense of this phenomenon of diminishing 
perceptual impact, and how might he articulate his inferences? From an instructional-design perspective, is 
the technologically sophisticated semiotic system built into the autoplotting histogram helping or hindering 
Li’s learning?; is this histogram “cognitively ergonomic” (see in Abrahamson, 2009b), and if so, which 
phenomenological resources could it tacitly cue and how might Li articulate these notions mathematically?  
 
Analysis: Analogy-Based Unpacking of Intensive-Quantity Action–Objects 
In this section we present and discuss a 41-second videographed excerpt and annotated transcription of a 
conversation fragment between Li and the interviewer, in which Li reasons analogically about the samples’ 
diminishing perceptual impact on the histogram shape. The excerpt begins when Li and Dor have already 
negotiated the construction of the sample space, have assembled it in the form of the combinations tower, 
have discussed relations between the marbles-box experiment and the combinations tower, and have been 
working on 4-Blocks. Doing so, Li draws on non-mathematical phenomena as contexts for his quantitative 
reasoning. Li’s rhetorical strategy is to build an argument by comparing two extreme cases of sampling: (a) 
at the beginning of the experiment, when a relatively small number of outcomes has accumulated so that 
each supplementary sample causes quite a “splash”; and (b) well into the experiment, when a considerable 
number of outcomes has accumulated, so that any additional sample causes but a “ripple.” His first 
context—the glass/lake analogy—will present this contrast in full, and then the second context—batting 
averages—elides the first of the two cases in pragmatic enthymeme and states only the second case. Just 
prior to these analogies, though, Li anticipates that the emergent experimental frequency distribution will 
resemble the combinations tower in shape; he will then monitor this emergence to evaluate his prediction. 
 

Dor: So what do you think might be the shape of the columns, as it goes up? 
Li: [Gesturing to the combinations tower] Something like this. 
Dor: Well let’s see. [activates experiment, explains autoplotting] So what’s happening? 



Li: [Gesturing to the distribution] It’s hovering at around this [gestures to 
combinations tower]…. [20 seconds later, when 5,000 samples have been drawn] 
Look, it’s [the frequency distribution] almost exactly like this [the combinations 
tower]…. [30 seconds later] Now they’re [columns] moving less [inaudible]. 

Dor: Why is it moving less? 
 

Embedded in the interviewer’s questions is an implicit linguistic passage from “the columns” to 
“it.” Li picks up this cue and accordingly refers to the columnar frequency distribution with the pronoun 
“it.” Irrespective of the fullness of his understanding at this point, Li’s appropriation of the interviewer’s 
singular pronoun as reference to the column collective suggests he is construing the distribution as an 
intact, if amorphous, object. Soon after, Li again frames the aggregate motion as “plural” behavior. Below, 
this motion is about to become the object of discussion. Namely, the histogram’s figural change is first 
described with a verb (“moving”) but will soon become a noun (“splash” vs. “ripple”) (cf. Bakker, 2007, 
for a similar case of Peircean 'hypostatic abstraction' in statistical analysis). What is unique about these 
nouns is that they are inherently about change. That is, the object at the core of Li’s proto-mathematical 
reasoning is not a static magnitude, such as the measured vertical displacement of the histogram bars (an 
‘a’ element) or the cumulative number of samples (a ‘b’ element)—Li’s tacit phenomenological primitive 
in this dynamical experience is a synthetic a priori—an intact action-based a/b change-over-time intensive-
quantity unit (cf. Stroup, 2002). Thus, technological affordances of visualization media—the dynamical 
autoplotting histogram—may reverse mathematics learning sequences from the traditional magnitudes-
before-relation to relation-before-magnitudes. Li’s ensuing metaphorical outburst, in which he deftly 
unpacks the intact a/b change–object into its a and b constituents, we submit, implies that we should take 
pause, as mathematics educators, to consider the possibility that students learning intensive quantities, such 
as in the mathematics of change, may avail of trajectories that go counter to traditional curricular 
sequencing. It is thus that computers may “restructurate” mathematical content (Wilensky & Papert, 2009). 

Yet what phenomenological resources will Li bring to bear in explicating the change–object? 
Whereas the NetLogo histogram, when the model is run, foregrounds change as the salient object of 
attention and may thus render the mathematics of change more accessible to learners, the autoplotting 
feature may conceivably challenge students due to its ostensible phenomenological aberration. That is, in 
“real life,” we may muse, growing aggregates actually occupy greater space. Intriguingly, however, natural 
visual perception is a perspectival experience, in which retinal prints of objects depend on their distance: 
 

Li:  /2 sec/ Because…/3 sec/ [gazes up to the wall] the larger number…/3 sec/ uhh… 
[“checks in” with the interviewer] /2 sec/ [rapidly] Like if you have a little glass 
[iconic gesture: LH cups a glass in natural position near body; gazes at glass] of 
water and you drop a marble in [iconic: LH uncups, rises, drops marble], it’s 
gonna be... there’s gonna be, like, a splash [LH, palm up, abrupt vertical rise], 
but if you have a big giant lake [LH, palm up, drawn back and up above head to 
encircle expansive lake; RH, in jacket pocket, budges to complete circumference], 
and you throw a marble in [LH catapults marble, then scratches nose], there’s 
just gonna be a ripple [joins LH thumb and index, lowers hand to chest height on 
right-side of embodied space; taps fingers together, possibly marking marble’s 
contact with surface, then inscribes smooth horizontal line across to the left; hand 
opens]. It’s a, it… [gestures to histogram, orients gaze and pivots body towards it] 

Dor: Oh, ok. Like each individual additional sample [LH gyrates swiftly, iterating 
addenda] is causing less of a [LH & RH “contain” combinations-tower outline]… 

Li: [cuts in mid sentence] Yeah, it’s like a batting average in baseball. If you’ve 
already had five hundred at-bats(2) [LH opens, shifts slightly to the left, palm up, 
“holding” the 500 at-bats, then relaxes], and then you get out one more time, it’s 
not going to make it go down that much—it’ll make it go down like two points 
[LH pinches thumb and index, as per “ripple,” as if to subtract two points], or… 

Dor:  Ok, so as we go along, each successive sample causes less of a commotion. 
Li: Yeah. [Gazes back at the computer screen] Look, they’re just barely moving. 
 

The conversation, above, pertained to variation in the effect of a single sample on the proportional 
distribution of experimental outcomes: as outcomes aggregate, the proportional impact of each additional 
sample diminishes. Viewed on the computer screen, the self-compressing histogram converges on the 1-4-



6-4-1 distribution, eventually portraying the dynamic aggregation as perceptually static, albeit the 
constantly updating maximal y-axis value reveals the process as additively active. Li appears to understand 
this principle. However, this high-achieving 6th-grader’s limited fluency with proportional constructs does 
not enable him to capture the process with appropriate vocabulary, such as “proportion” and its cognates, or 
with suitable mathematical constructs and arithmetic operations for conceptualizing and treating rational 
numbers, as witnessed in his aborted attempt, “Because the larger number…” Consequently, Li evokes a 
situation analogous to the dynamic artifact yet evaluated as more conducive to objectifying the principle. Li 
thus unpacks “splash > ripple” as “one-marble-impact : size-of-glass > one-marble-impact : size-of-lake.”  

The key physical dimension underlying the splash-vs.-ripple articulated comparison is the vertical 
height of the water displacement in each. And yet, would not a marble thrown into a lake produce a vertical 
displacement of water that is at least as large if not larger than in a glass? What is at stake here, it appears, 
is not the absolute physical size of phenomena but their pre-rationalized perturbations to the perceptual 
field. Thus, ratio is pre-built into perspective as an optical calibration. Moreover, equally sized distal events 
are normalized by their containers, because these perceptions’ phenomenological circumstances are such 
that events occurring in larger containers are physically farther from the viewer and therefore retinally 
smaller. Li’s spontaneous gestures inscribe the glass and lake as they would be perceived in the unreflective 
phenomenology of lived experience, so that the lake occupies little more optical canvas than the glass does 
upon Li’s “visuo–spatial sketchpad” (see Baddeley & Hitch, 1974).(3) Thus, Li can compare two intensive 
quantities—the splash and the ripple—on the basis of their retinal magnitude alone (see Figure 3, below).(4) 

 

 
Glass Splash Lake Ripple 

Figure 3. Dominant gestures in the Li’s glass-vs.-lake comparison analogy, with arrows as action overlays. 
 

In summary of Li’s first analogy, his argumentation responded to the interviewer’s request for an 
explanation regarding the patterned behavior of a dynamical mathematical object—an electronic histogram 
that is confined in its total interface real-estate yet monitors an ever-aggregating vertically surging outcome 
distribution. Li’s analogical constructions, however, shifted the dyad into an imagistic discursive space, 
wherein larger aggregates are in fact embodied in larger objects. Therein, Li compared two intact 
experiential events, both a priori intensive quantities; only through engaging in thinking-for-speaking 
(Slobin, 1996) did Li unpack each of these quantities “cubistically” (Nemirovsky & Ferrara, 2009) such 
that its respective constituents were “liberated” (Bamberger & Ziporyn, 1991) into a and b magnitudes so 
that each event was reconstructed as an a/b qualitative quotient. This unpacking is anecdotally enhanced by 
Li’s essentially unidextrous sequential gesturing, which radicalizes the discursive caveat of linear utterance. 

In selecting a baseball context for his second analogy, Li evokes a situation that is more conducive 
to mathematizing his argument. First, monitoring quantitative aspects of this popular activity is a familiar, 
culturally appropriate practice. Second, the baseball example is more ontologically consistent than the 
water example: in the glass-vs.-lake analogy, the perturbation was caused by a marble dropped into water 
and thereafter the marble is ignored, whereas in the baseball scenario, the perturbation was caused by the 
player performing an at-bat, which is thereafter added to the denominator of the “batting average” (and to 
the numerator, contingent on how the at-bat played out). Third, the baseball analogy offers a pre-
enumerated set of discrete units, 500 at bats, whereas the water analogy would demand measurement of the 
continuous body before further calculation could be performed. Finally, a batting average is an a priori 
proportional construct, so that this analogy is much nearer to the probability context—culturally, 
semantically, semiotically, and arithmetically—than the water-surface analogy. Thus, in selecting the 
baseball analogy, Li also steers the dialogue from the rich imagistic detour, which the interviewer had 
countenanced, back to the institutionally normative genre of discussing quantitative reasoning numerically. 
Using numbers as precise signifiers of quantity, in the baseball analogy, Li need not communicate 
magnitudes gesturally—indeed, comparison of the vast “big giant lake” gesture to the modest “500 at-bats” 
cupping as well as, analogically, comparison of the lake-impact gesture to the “-2” (read: “-.002”) gesture 
demonstrate pragmatic contraction in iconicity from the first to the second context (see Radford, 2008). 



Having completed his two-analogy argumentation sequence (see Figure 4, below), Li looped the 
dyad back to the phenomenon under inquiry. Presumably, the interlocutors, who renew their co-attention to 
the histogram, do so with newly shared professional vision established in analogical discursive space.(5) 
 

Impact MAJOR  BARELY DISCERNABLE 

 Context Before Perturb Effect  Before Perturb Effect 
Marbles-
Scooping 
Experiment 

 

+1 sample 
 

 

 

 

+1 sample 
 

 
                     
Marble in 
Water Cup throw 

marble  “Splash”  Lake throw 
marble  “Ripple” 

            
Batting 
Average 

– – –  Batting average at 
500 at-bats (x/500) 

One out Batting average at 
501 at-bats (x/501) 

 

Figure 4. Analogizing the proportional impact of an addend as a function of the size of the aggregate.  
 

Li’s imagistic analogical detour suggests that he needed to step back from the sophisticated 
semiotic device and reconstruct a phenomenological scaffold by which to perform epistemic adjustment 
that then enabled him numerical objectification of his presymbolic image of proportional convergence. 
Implicit to this process of mathematization was re-describing multimodal phenomenology in conventional 
techno–scientific form. This bridging task, an aspect of meta-representational capacity (diSessa & Sherin, 
2000), is cognitively non-trivial. We implicate the technologically sophisticated self-adjusting histogram as 
complicit to the tension between Li’s tacit and cultural presentation of quantitative information: by 
perceptually foregrounding proportional change over additive change, the autoplotting histogram offers a 
cognitively ergonomic engagement of the mathematics of change, yet to avail of this restructurated entry to 
the disciplinary practice, students require guided opportunities to negotiate embodied and inscribed 
constructions of focal phenomena. Metaphorical reasoning is one means of accomplishing this negotiation. 

 
Conclusions 
Whereas there is a certain logical appeal to thinking of an object as somehow cognitively simpler than an 
action (object + motion), the phenomenological perspective perceives actions as prior to objects—objects 
need to be deliberately pulled out of experience as transcendental to unreflective action. Analysis of Li’s 
imagistic construction revealed that he was drawing on phenomenological gestalts that are experientially a 
priori to mathematically articulated notions of ratio. Understanding such processes could inform the work 
of mathematics educators. In particular, educators who reason about mathematics logically but not 
phenomenologically are liable to introduce a/b constructs by initially presenting a and b as separate 
elements and only then calculating their quotient and suggesting meanings for this number. Yet such 
would-be scaffolding may sometimes hamper rather than optimize students’ opportunities to draw on their 
informal reasoning, particularly their tacit intensive-quantity gestalts, in constructing mathematical notions. 
Instructional design solutions, we believe, lie in between, in creating opportunities for students to negotiate 
phenomenological qualia and their mathematical reconstructions (Abrahamson, 2009a, 2009b, 2009c). (6) 
 

Endnotes  
(1) Elsewhere, we furnish detailed explanation of the design motivation and rationale and report on findings and 

design modifications throughout the iterated study cycles (Abrahamson, 2009c). Therein, we also report on the 
earlier part of Li’s interview, focusing on his “semiotic leap” from presymbolic to articulated notions. 

(2) A “batting average” is the cumulative ratio of hits (successful batting) to at-bats (opportunities to do so). 
(3) It could have been fascinating to witness how Li would then inscribe these images using pencil and paper. 
(4) The elongated horizontal extent of the ripple gesture does not map onto any mathematical analog—it is not the a, 

the b, or the a/b—yet it is what one would see/feel, so it is gestured. Paradoxically, this mathematically excessive 
magnitude could constitute a disservice to the comparison, because it inflates the a. Yet this “soothing” gesture 
may be contributing a holistic diminutive affect that thus in fact mitigates the ripple in comparison with the splash. 

(5) The interviewer never appeared perturbed by dimensions of embodiment, discourse, and inscription implicit to 
Li’s utterance, because he shares with Li tacit cognitive mechanisms for engaging multimodal reasoning. 



(6)  The data analyzed herein were collected in a study supported by an NAE/Spencer Postdoctoral Fellowship 2005-6. 
The ideas we present herein are the result of the Seeing Chance group’s collaborative work, foremost Mike Bryant 
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