
Running Head: SUPPORTING COMPUTATIONAL EXPRESSION

Supporting Computational Expression: How Novices Use
Programming Primitives in Achieving a Computational Goal

David Weintrop1,2 and Uri Wilensky1,2,3

1Center for Connected Learning and Computer Based Modeling,
2Learning Sciences,

and 3Electrical Engineering and Computer Science
Northwestern University

SUPPORTING COMPUTATIONAL EXPRESSION

 2

Supporting Computational Expression: How Novices Use
Programming Primitives in Achieving a Computational Goal

Introduction
It has been argued that computational thinking and the skills associated with it are

of critical importance and deserve a position alongside reading, writing, and arithmetic as
part of the core knowledge one needs to be successful in the 21st century (National
Research Council, 2010, 2011; Papert, 1980, 1996; Wing, 2006). Central to
computational thinking is the ability to translate or encode ideas into representations that
leverage computational power. In this way, computational thinking is closely aligned
with Papert (1980), diSessa (2000) and colleagues’ notion of computational literacy, in
which people are seen not just consumers of computational artifacts, but producers as
well, creating what diSessa calls a “two-way literacy”.

To better understand this process of computationally encoding ideas, RoboBuilder
(Weintrop & Wilensky, 2012), a program-to-play constructionist video game (Weintrop,
Holbert, Wilensky, & Horn, 2012), was designed to challenge players to invent gameplay
strategies and express them computationally. Early in our analysis of participants playing
RoboBuilder, it became apparent that the game’s language primitives were being used in
a variety of interesting ways during gameplay. This led to an analysis of the question:
What roles do language primitives play in novice programmers’ generating
computational expressions?

This paper presents findings from this investigation. The paper continues with a
brief introduction to RoboBuilder and a discussion of the theoretical framework used to
structure our analysis. Next, we present vignettes from a pilot study conducted illustrating
the three distinct usages of the game primitives we identified: 1) serving as a means for
computational expression, 2) providing a source of inspiration, and 3) acting as a
resource for generating explanations of observed behavior. The paper concludes with a
discussion of the implications of these findings.

Meet RoboBuilder
RoboBuilder (Figure 1) is a constructionist, blocks-based, programming game

that challenges players to design and implement strategies to make their on-screen robot
defeat a series of progressively more challenging opponents. The players’ on-screen robot
takes the form of a small tank, which competes in one-on-one battles against opponent
robots equipped with the same set of capabilities as the players’ robot has. The objective
of the game is to defeat your opponent by locating and firing at it while avoiding
incoming fire from your adversary. Unlike a conventional video game where players
control their avatars live during battle, in RoboBuilder, players must program their robots
before the battle begins. To facilitate this interaction, RoboBuilder has two distinct
components: a programming environment where players define their robots’ strategy, and
an animated robot battleground where their robots compete. The game is played by

SUPPORTING COMPUTATIONAL EXPRESSION

 3

having the player first use the programming interface to construct their robot’s behaviors
before launching the battleground screen where they can see their programmed strategies
enacted. To implement their strategy, players are provided with a set of language
primitives; the language includes movement blocks (ex: forward, turn left, turn
gun right, fire) to control the robot’s motion, event blocks (ex: When I See a
Robot, When I Get Hit) to control when instructions will execute, and control
blocks (ex: Repeat, If/Then) that can be used to introduce logic into the robot’s
strategy.

Figure 1. RoboBuilder’s two screens. The battle screen, on the left, is where players watch their
robot compete; the construction space, on the right, is where players implement their strategies.

Theoretical Framework
The constitutive role of language and tools on cognition has long been a topic of

research. A central theme of Vygotsky’s sociocultural theory of mind was the claim that
mental functioning is mediated by tools and signs (Wertsch, 1991). “The sign acts as an
instrument of psychological activity in a manner analogous to the role of tool in labor”
(Vygotsky, 1978, p. 52). Work looking at the relationship between signs (or more broadly
representations) and cognition has delineated the particularities of how representations
are bound up with knowledge, learning, tasks and uses (diSessa, 2000; Parnafes &
diSessa, 2004; Sherin, 2001; Wilensky & Papert, 2006, 2010; Zhang & Norman, 1994).
diSessa (2000) called this idea “materially-mediated-thinking” arguing that “thinking in
the presence of a medium that is manipulated to support your thought is simply different
from unsupported thinking” (p. 115). He goes on to say “we don’t always have ideas and
then express them in the medium. We have ideas with the medium” (p. 116, emphasis in
original). Wilensky & Papert (2006, 2010) have argued in their restructuration theory that
the notions of task and content themselves cannot be separated from the representational
infrastructure employed, content shapes and is shaped by the representational language.

Given the foundational and constitutive role of the representations provided, to
understand the cognitive task of programming, the analytic lens cannot focus purely on
the individual, but instead must also include the signs (programming language) and tools
(computer) provided to accomplish the task. In their cognitive account of direct

SUPPORTING COMPUTATIONAL EXPRESSION

 4

manipulation interfaces, Hutchins et al. (1985) argue that the “distance” between the
goals of the user and the tools and resources provided by the physical system can aide or
hinder users in accomplishing the task set before them. Distance, they argue, is not a
property of the interface alone, but instead “involves a relationship between the task the
user has in mind and the way the task can be accomplished via the interface” (Hutchins et
al., 1985, p. 318). Taking seriously the mediating role of the programming language in
RoboBuilder, the analysis presented below focuses not on the individual alone, nor the
language primitives themselves, but instead on the two acting in concert; what Wertsch
(1991) calls an “individual-acting-with-mediational-means”. Through employing this
analytic lens, an examination of RoboBuilder gameplay is revealing that the language
primitives play a variety of roles in helping novices achieve their goals.

Methods
In the remainder of this paper, we present a series of vignettes from a pilot study

we conducted intended to explore the varying roles that the programming language
primitives played in accomplishing the in-game challenge. We have piloted RoboBuilder
with a wide age-range of users, from middle school students through graduate students,
all sharing the characteristic of having little or no prior programming experience. The
university-aged participants were students at a large Midwestern university. Two of the
younger participants were recruited through university connections, while the remainder
of the participants were recruited through a community center in a large Midwestern city
that serves a predominantly African-American, low SES community. We will introduce
the participants at the outset of each vignette. Each participant played RoboBuilder for at
least 40 minutes, resulting in a total of roughly 18 hours of interview and gameplay
footage and over 200 robots being constructed.

The data presented below were collected through one-on-one interviews in which
a researcher sat alongside the participant as she played the game. At the outset of a
session, the interviewer introduced the participant to RoboBuilder, explaining the game
objective and the components of the game environment. The participant was then given a
chance to ask questions before the actual game play procedure began. The gameplay
portion of the session proceeded in an iterative, three-phase protocol. First, the player
verbally explained her intended strategies to the interviewer in conversation. Next the
participant was given the chance to implement her proposed strategy using the blocks-
based language as the interviewer looked on. Finally, she would click the ‘Go’ button,
and then watch her robots compete, with the interviewer asking her to describe what she
observed and whether or not it matched her expectations. At the conclusion of the battle,
the next iteration of the protocol would begin with the interviewer asking the participant
what alterations she planned on making to her strategy to progress in the game. This
three-phase cycle was repeated for the duration of the hour-long session.

Each RoboBuilder session was recorded using both screen capture and video-
capture software. We also stored a digital copy of each robot strategy constructed during

SUPPORTING COMPUTATIONAL EXPRESSION

 5

the RoboBuilder interview for further analysis. Two sample frames from the video
produced during a RoboBuilder session can be seen in Figure 2.

	
 	
 	
 	

Figure 2. Two sample screenshots from a RoboBuilder session video. On the left, the participant
is programming his robot; on the right he is watching his robot compete against an opponent

Differing Roles of Language Primitives in RoboBuilder
In our analysis of the data collected during our RoboBuilder sessions, we have

identified a number of differing roles that language primitives have played in supporting
the player in accomplishing the in-game objective. The three distinct mediating roles for
the language primitives we have identified are: 1) serving as a means for computational
expression, 2) providing a source of inspiration, and 3) acting as a resource for generating
explanations of observed behavior. In this section, we provide vignettes for each of these
mediational roles and provide a brief discussion of each.

Primitives as an Means for Expression
The first usage of the language primitives identified in our analysis is the one

most closely aligned with the conventional view of the role programming languages play
in a programming task; that of an expressive medium with which to encode ideas in a
computationally executable form. In this role, the player conceives of a general idea or
specific strategy for their robot, then uses the programming language to mediate the
expression of that idea into a form the computer can interpret and execute. In this way,
the language is used as a representational system with which players express their ideas.

Primitives as a Means for Expression: Two Vignettes
In RoboBuilder, language primitives used in this capacity take the form of a

participant using the language to implement an idea that has been verbally expressed, but
not yet implemented. An example of this can be seen at the beginning of Morris’
RoboBuilder session. Morris is a university student in his junior year with no prior
programming experience. When asked what his strategy was for defeating his first
opponent, Morris responded:

Morris: So my master plan is to, like, be continuously moving, so it's harder to hit. If I
get hit, kind of change that path so it's different, than what you might be

SUPPORTING COMPUTATIONAL EXPRESSION

 6

expecting, however the sequence is running, and then, during that path, adjust
to what the opponent is doing to hit them.

He then proceeded with the implementation of his robot strategy. After six
minutes of working, he had produced his first program; the first three events of which are
displayed below in Figure 3.

Figure 3. The first three events of Morris’ first RoboBuilder program.

Comparing the strategies Morris articulated in his initial remarks to the program

he produced, we can see the primitives taking on an expressive role, mediating and

enabling the computational reification of his strategy. His “master plan” included three

distinct ideas, each of which can be seen in his resulting program. Table 1 showing the

correspondence between the verbalized component of his initial strategy and its

computational instantiation, along with a brief description of the resulting behavior of the

displayed code.

Verbalized Strategy Computational Implementation Comment

SUPPORTING COMPUTATIONAL EXPRESSION

 7

“Be continuously

moving, so it's

harder to hit”

This code will

result in his robot

remaining in

constant motion,

following a

rectangle-like path.

“If I get hit, kind of

change that path so

it's different”

These instructions

will move his robot

out of the current

line of fire.

“Adjust to what the

opponent is doing to

hit them”

This code will

make the robot’s

gun turn towards

it’s opponent and

fire at it.

Table 1. The three verbalized tactics and the corresponding computational implementation for
each from Morris’ initial RoboBuilder Robot.

From the first five minutes of Morris’ RoboBuilder session we get a nice
demonstration of how the language primitives can be used as a means for expression. Our
second vignette occurs roughly twenty minutes into Daniel’s RoboBuilder session.
Daniel is a tenth grade student with no prior programming experience who was recruited
to participate through an afterschool program at a neighborhood community center. After
seeing his first two robots struggle against the level one opponent, Daniel decides he
needs a new strategy. Daniel had initially thought his opponent would start the battle in
the exact same position every battle, so was trying to instruct his robot to move toward
that location. After watching his robot compete a few times, he realized the starting
locations are random; this prompts him to propose the following strategy: “since they
change the position of the robot every time, I won’t know where it’s at. So I just want to
make [my robot], like, spin in a circle and shoot.” Having verbalized this new idea,
Daniel gets to work, quickly implementing this robot strategy, the entirety of which is
shown in Figure 4.

SUPPORTING COMPUTATIONAL EXPRESSION

 8

Figure 4. Daniels implementation of his 'spin in a circle and shoot' strategy1.

The behavior of the Run event in RoboBuilder is to execute all the commands
inside it from top-to-bottom, then, upon completion, return to the top, creating a repeating
pattern. After try out his new strategy, the interview asks Daniel to describe what his
robot is doing, Daniel, with a big smile responds: “it's spinning in a full circle, and when
he sees the robot he's shooting.” In other words, the robot is carrying out the strategy that
Daniel had just vocalized. Here again, like with Morris’ vignette, we see the language
primitives serving as a means of expression.
 From these two vignette’s, we don’t mean to give the impression that expressing
ideas with the language primitives provided is always as easy or straightforward as these
two examples might suggest. For example, if we continue to use Daniel’s session as a
case study, we can see some of the challenges associated with this goal. Having defeated
the first (and second) robots with his spin-and-shoot strategy, Daniel encounters the level
three robot, whose strategy of remaining stationary with its gun focused on the opponent
is proving superior to his own. To combat this new tactic, Daniel proposes the following
strategy: “make him move more, and keep that, when you see the other robot shoot,
because the other robot is standing in one place, and just make my [robot] move more.”
Having verbalized his plan, he then went ahead, attempting to implement it, producing
the strategy shown in Figure 5.

Figure 5. Daniel's new strategy.

With his new implementation in place, Daniel launches the battle screen and is
surprised to see his robot not behaving as expected. “What I thought was going to happen,
isn't happening, I thought he was going to move from one side of the board to the other
side, but he's just standing in one spot. Going left, right, left, right.” Because the turn

1 Note: The spatial arrangement of the event blocks (in this case Run and When I see a robot) do not affect
the order in which they are run, so a side-by-side arrangement is equivalent to having the events stacked on
top of each other.

SUPPORTING COMPUTATIONAL EXPRESSION

 9

right and turn left blocks only rotate the robot, Daniel was not successful at
implementing his latest strategy of making his robot move around. Figure 6 shows his
next robot construction, where, having learned from his previous attempt, he successfully
implements his idea of getting his robot to keep its “when I see a robot shoot” logic while
also introducing movement, so it does not remain stationary.

Figure 6. Daniels final robot in which he successful encodes his verbalized strategy using the
language primitives provided.

Primitives as a Means for Expression: Discussion
The ability for a programming language to enable users to express ideas in such a

way that they can be interpreted and executed by a computer its primary role, as, by
definition, if it is not possible to write a program using the representational system, it can
hardly be considered a programming language. This role is akin to the ability for the
alphabet to be used to express ideas in the written form, the difference being in the case
of programming languages, the audience is not another human, but instead a computer. In
this way, programming languages serve as a bridge across what Hutchins et al. (1985)
call the gulf of execution, which describes the distance between a user’s goals and the
expression of those goals using the representations understood (and often defined by) the
system. Based on the designed affordances of the programming language, this task can be
made more accessible or more difficult. Hutchins et al. (1985) argue that users can be
aided in effectively bridging this gulf “by making the commands and mechanisms of the
system match the thoughts and goals of the user” (p. 318). In the case of RoboBuilder, to
support programming novices in expressing their ideas with the provided representational
system, the language primitives were designed to carry semantic meaning within the
context of the game in such a way as to enable players to understand how they could be
used to express an idea. This can be seen in the above vignettes in the close mapping
between the verbal language of the player and the labels on the blocks, for example,
Morris said: “If I get hit…” and then used the When I get hit block. Similarly, his
statement that he wanted his robot to “be continuously moving” resulted in him using the
blocks forward and turn right, two commands that can be expected to produce
movement in the robot. Likewise, with Daniel, comments such as “spin in a circle and
shoot” closely map onto the language primitive provided.

SUPPORTING COMPUTATIONAL EXPRESSION

 10

The mediational role played by the primitives made it possible for Morris, Daniel,
and other participants that played RoboBuilder to encode their ideas in a way that the
computer could understand. The representational system acts as a bridge between the
robot strategies he has imagined and the computational environment where the strategies
are enacted. These vignettes are two of many from our research and serve as examples of
the first identified role that language primitives can play in a programming activity: that
of a mediating role between an idea generated by a player and computationally
executable reification of that same idea.

Primitives as a Source of Inspiration
The second identified role that language primitives play is that of inspiration.

When participants use the language primitives in this capacity, the primitives are not used
to express ideas the participant has already come up with, instead, the language
primitives act as a source of ideas, mediating the task of generating an idea for the
challenge at hand.

Primitives as a Source of Inspiration: Two Vignettes
Our two examples of this usage of language primitives come from a series of

RoboBuilder interviews conducted with Beth. Beth is a vocal performance major at a
large Midwestern university who had no prior programming experience and had admitted
to not having taken a math course since high school. After being introduced to the game,
Beth was asked how she was going to defeat her first opponent, she responded:

Beth: Well, I...I don't know, it seems to make sense to have, to determine what would
happen in every case, so I think I'll use these dark red buttons2, or whatever
they are, and try and figure out what I want to have happen.

Beth then proceeded to go through each block in the Game Events drawer, using
them as a roadmap to develop a strategy for her robot. In Figure 7 on the right, we can
see Beth’s first completed robot strategy; on the left we see the Robot Events drawer that
lists the available Game Event blocks.

2 The dark red buttons Beth is referring to are the Game Event blocks. A full list of them can be
seen in the left pane of Figure 7.

SUPPORTING COMPUTATIONAL EXPRESSION

 11

Figure 7. On the left, is the Robot Events drawer, on the right is Beth’s first implemented Robot.

What is especially interesting about Beth’s first robot is that not only did she
implement every possible event, but also the order of the events in her program perfectly
matches the presentation in the Robot Events drawer. The video from her interview
shows Beth starting at the top of the list of events and working her way down. This
suggests that she did not have a clear, unified strategy when she began to program her
robot, but instead, built her program event-by-event, following the road map set out by
the order of the blocks within the Game Events drawer, using these primitives to
bootstrap the generation of a valid (and successful) robot strategy.

By the time Beth had reached the level 5 robot, she had been playing the game for
almost 80 minutes, and, over the course of gameplay, encountered almost all of the
blocks provided by the game either by using them, or reading through them as she was
trying to figure out what she wanted her robot to do (much in the same way she read
through the Game Events blocks as described above). In constructing a strategy to defeat
the level 4 opponent, Beth, for the first time, used a block from the Target Robot drawer,
which contains primitives that provide information about the opponent robot. In her
strategy she used the Target’s Bearing block, which returns where the enemy is
relative to the direction your robot is facing in terms of degrees, ranging from -180 and
180. Figure 8 shows the relevant events of Beth’s latest robot as well as the contents of
the Target Robot drawer.

SUPPORTING COMPUTATIONAL EXPRESSION

 12

Figure 8. The left image shows the relevant events of Beth’s 5th robot; on the right is the Target
Robot drawer.

 Beth was trying to add logic to her robot so it would turn at face her enemy robot
but having difficulty3. This difficulty prompted the following exchange:

Beth: What else can I know about the target's robot? (Beth opens the target robot
drawer4) Alright, it's heading, I suppose that would be like, the information
from the target's heading would like, tell me in which direction it was going?

Interviewer: (Interviewer answers her question)

Beth: yeah - So that might be helpful, ok, (Beth continues reading from the drawer) so
distance from me, nah - that doesn't help, target's speed - target's energy -
bullet’s bearing, bullet's heading.

Interviewer: Those last two, bullet's bearing and bullet's heading are for when I get
hit, that's when you know information about the bullet, because it's kind of
that same idea of like, when you get hit, you know information about the bullet
when you see a robot, you know information about the robot.

Beth: Oh - ok, so I would use bullet's bearing, bullet's heading when I get hit, like that
would tell me, that could tell me where it is - oh! (Her voice rises in
excitement) because, the bearing would be where it is coming from, right?
(Interviewer nods) So...so... ok, I’m just going to get rid of this (she drags the
turn gun target's heading block into the garbage) because that's not helping me,
but when I get hit, oh, oh! (Her excitement is growing) so turn gun right 180,
that's just arbitrary (she drags turn gun right 180 from When I get

3 In this case, her confusion stemmed from the values returned by the target’s bearing
command, which return positive numbers if the target is to the player’s right and negative if the
target is to the player’s left. Beth’s usage of turn left resulted in unexpected and unintended
behavior, as it caused her robot to turn in the wrong direction.
4 Non-italicized text inside parenthesis within a quote provides further context for what was said
or describes non-verbal actions that occurred during the utterance.

SUPPORTING COMPUTATIONAL EXPRESSION

 13

Hit into the garbage) whatever, sometimes that worked, sometimes it didn't
but turn, when I get hit, turn gun right...ok, and now I'm going to try, so if I,
here I am, here's the bullet, ah I just got hit, so I want to turn my gun right,
how am I going to determine. Can I just do bullet's bearing? Or is that not
going to work…?

There are two interesting things to note from this excerpt. First, Beth is reading
through the blocks in the Target Robot drawer, considering how she might use each. She
entertained the idea of using Target’s Bearing and Target’s Heading, quickly
dismissed the next three blocks as not being useful for the problem she is trying to solve,
before landing on the two blocks related to the bullet direction. This reading of language
primitives without a clear idea of how she going to accomplish the goal she has in mind
is evidence that the language primitives are not being used in an expressive way, but
instead are playing a generative role in helping her come up with ideas. Using diSessa’s
language, she is “thinking with the medium”.

The second interesting thing to note is the change in her overall strategy that
occurred after hearing an explanation of what information the two bullet related blocks
provide. Immediately upon hearing the interviewer’s explanation of the Bullet’s
Heading and Bullet’s Bearing blocks, she adopted a new strategy that made these
blocks central. Beth’s new strategy was to turn her gun towards the source of the bullet
whenever her robot got hit. If her opponent was not moving (which was the case for the
robot she was currently competing against), this action would point the gun at her
opponent. Figure 9 shows the same two events as Figure 8 after the above exchange
transpired, all the other events in her program were untouched during this iteration.

Figure 9. The two main methods of Beth’s strategy after discovering the Bullet’s Bearing
block.

Primitives as a Source of Inspiration: Discussion
In these two vignettes from Beth’s RoboBuilder interview, we see RoboBuilder’s

language primitives playing a distinctly different role from the way they were used in the
vignette in the prior section. Whereas Morris used the language primitives in a mainly
expressive capacity, here we see Beth utilize the language primitives as a source of
inspiration for the strategies she eventually implements. . In the first vignette she even
states her intention to use the language primitives in this capacity, saying: “I think I’ll use
these dark red buttons…and try and figure out what I want to have happen.” Later, in the

SUPPORTING COMPUTATIONAL EXPRESSION

 14

second vignette, we saw how, once again, she used the language itself as a resource to
help hear accomplish the larger goal of defeating her opponent. By reading through the
set of primitives provided, and using them as objects-to-think-with (Papert, 1980) as she
worked to develop her robot strategy, Beth was able to successfully program her robot
despite not having any formal programming training. Consistent with diSessa’s (2000)
idea of “materially-mediated-thinking”, in these episodes it appears that Beth is having
ideas with the medium. The language primitives are mediating her thinking about the
challenges, bootstrapping the process of come up with ideas for how to go about
accomplishing the computational challenge set forth by the game.

Along with diSessa’s “materially-mediated-thinking” and Papert’s “objects-to-
think-with”, we can see how the use of representational systems in this capacity relates to
Wilensky and Papert’s (2006, 2010) notion of a structuration, as the representation itself
is enabling certain ideas to be expressed more easily. You can imagine that if instead of
using the blocks provided, if the language was an abstract set of operations with labels
like: operation1, state2, and movementX, that even if the two languages were
equivalent, that Beth would have produced a very different robot strategy. In this way,
the language itself supports and makes more accessible the expression of certain ideas. In
the case of designing environments for novices, recognizing that the primitives are used
in this capacity is critical for scaffolding the user in having early success as it can provide
a roadmap to follow for getting started in expressing ideas with the tools provided.

Primitives as a Resource for Explanation
The third observed use of RoboBuilder’s primitives was that of an explanatory

tool with which to decipher and interpret observed robot behavior. In this role, the
language primitives were used to mediate the process of developing an understanding of
what was observed during battle. Observed behaviors were interpreted through the
primitives; the primitives provided a means to explain the observed behavior.

Primitives as a Resource for Explanation: Vignette
An example of this usage can be seen toward the end of Anne’s RoboBuilder

interview. Anne is a junior at a Midwestern University, who like all other participants in
the study, had no prior programming experience. At the time of the interview, Anne was
finishing up her undergraduate degree and had no prior programming experience. She
had just finished implementing the seventh iteration of her robot, during which she
introduced the When I get Hit event in hopes of addressing a weakness in her
strategy she had identified during her last battle. Figure 10 shows the two events from
Anne’s program that are relevant for this episode.

SUPPORTING COMPUTATIONAL EXPRESSION

 15

Figure 10. The two events of interest from Anne’s robot implementation.

Having made this addition, she launched the battle screen to test her changes.
Things were looking promising until her robot was hit a few times in succession and
backed into the wall. Her robot proceeded to remain pinned to the wall, motionless,
getting hit until the match ended. When this happened, Anne got a confused look on her
face and asked: “Oh, what am I doing now? Wait, what happened?” Not being able to
make sense of what she was seeing based on what she remembered programming, Anne
rhetorically asked: “Wait, but when I run into a wall, what’d I put?” She then dragged the
battle screen to the left so that she could see both the battle screen and her code
simultaneously (Figure 11).

Figure 11. A screen shot of Anne reading her code while a battle is occurring to understand the
unexpected behaviour she just observed.

Upon seeing her code, she realized the bug she had introduced to her robot
strategy. When her robot backed into a wall, her When I Run into the Wall logic
would instruct her robot to back up an additional 300 steps, which had the result of
keeping her pinned against the wall, essentially creating an endless loop until the end of
the battle. By going back to her construction, and examining the instructions she had

SUPPORTING COMPUTATIONAL EXPRESSION

 16

defined, she was able to understand why her robot would stop moving once it had backed
into a wall. Having first seen an unexpected behavior, she was able to use the
construction as a tool to mediate her developing an understanding of the unexpected
behavior she had observed.

Primitives as a Resource for Explanation: Discussions
This vignette provides an example of the third role that programming language

primitives can play during a programming task that is quite distinct from the first two.
Whereas the first two uses are generative in nature, this third usage shows the central role
the language primitives can play in mediating a comprehension task. Where our first
identified role of supporting computational expression was analogous to an alphabet
being able to support writing, this third role highlights the need for the representational
system to be able to be read. This highlights the dual audiences of computational
representations. With computational representational systems, the primary audience for a
constructed artifact is the computer on which it is going to be run, but there is also a
secondary audience: any human tasked with interpreting, modifying, or extended the
computational artifact. The fact that a program written with a computational
representational system serves as a static set of instructions that produce a dynamic
outcome, in our case the in-game robot behaviors, supports its being used in a meaning-
making capacity. While the program is being run, the constructed artifact can serve as a
blue print, containing an explanation for how and why the program is behaving as it is.

In the above vignette, without referring back to her program, Anne was unable to
make sense of what she saw her robot doing. In this way, the language was playing a
mediating role in helping her come to an understanding of how her program worked. In
this case it was the original author who was reading her own code, but it is very common
for programs written by one person to be read by others so they can understand, and
ultimately use, or extend the program. In this way, we see how programming languages
can be used as a way not to mediate the expression of ideas, but also to mediate the
understanding of ideas already expressed.

Implications of this Finding
Recognizing the various roles programming primitives play has implications for

designers of novice programming environments and beginner programming languages.
For a language designer, the differing usages of language primitives each suggest a
different set of priorities and considerations for how the language should be designed and
presented. If the goal is expressiveness, a language that supports as many
implementations as possible would be ideal; this suggests a small grain-size and large set
of options (these characteristics are valued by professional programming languages such
as Java and c++). Alternatively, when designing for an audience who might use the
language as a source of ideas, the language must fit the task it was designed for in such a
way that the primitives themselves can bootstrap the generation of successful programs.

SUPPORTING COMPUTATIONAL EXPRESSION

 17

In this case, language primitive might be of a larger grain-size, carrying more meaning in
the context of the programming challenge at hand. “It is critical to design primitives not
so large-scale and inflexible that they can only be put together in a few possible
ways…On the other hand, we must design our primitives so that they are not so "small"
that they are perceived by learners as far removed from the objects they want to model”
(Wilensky, 1999, p. 168). Finding the right size primitives is one of the central challenges
for designers where creating a language and environment for novice programmers.

Designing for all three of the usages presented in this paper presents a challenge
to the designer as in some cases; design decisions made to support one usage may be at
the expense of another. An example from RoboBuilder’s language will make this tension
more concrete. The set of game events provided in RoboBuilder (like When I See a
Robot and When I get Hit) were designed to provide conceptual hooks for players to
introduce behavioral logic to their robot that would execute when their robot entered that
state. By providing a fixed set of events, the language constrains how and when behavior
logic can be introduced in the game. An alternative approach would have been to expose
more basic primitives that would have allowed players to specify their own game states
that could then be used to introduce specific behaviors to their robot. The decision to
provide a standard set of events, as opposed to a customizable set has consequences with
respect to all three of the identified primitive usages. First, with respect to the usage of
primitives as sources of inspiration, by providing a fixed set of event blocks that a custom
to the RoboBuilder game context, the event blocks can play a generative role in
developing a robot strategy. We saw this in Beth’s vignette described above, where her
strategy was strongly influenced by the set of provided game events.

Second, with respect to the role of primitives as an expressive medium, the
consequence of providing a fixed set of events is that the provided event blocks constrain
the set of battlefield states that a player can respond to. During the pilot study,
participants did generate ideas that could not be expressed with the provided event blocks.
For example, after Anne realized her When I hit a Wall logic would only work
when she hit a walling going forward, she proposed the idea of having a different
behavior if the robot hit the wall moving forward as opposed to backwards. Due to the
provided event blocks, it was not possible to implement this solution as she described it.
If the primitives were of a finer grain and thus more expressive, it might have been
possible for her to have defined two different events, one for running into the wall while
going forward, a second for running into the wall going backwards.

Finally, with respect to the primitives playing an interpretive role, the
consequence of providing pre-defined event blocks was that sometimes it was difficult
for players to understand exactly what their robot was doing because they themselves did
not program the block. A number of players asked for clarification on what it meant for a
robot to ‘see’ another robot (in reference to the When I See a Robot event block).
Because this block black-boxed the logic to interpret the detection of an opponent robot,

SUPPORTING COMPUTATIONAL EXPRESSION

 18

players had to ask the researcher for an explanation of the event, as opposed to deriving
meaning from the code itself. An example of this came during Morris’ interview, his
When I See a Robot event was not behaving as expected, he went back and read his
code, but was still not clear on what was happening, which prompted him to ask:

Morris: So when does [my robot] like, register as “seeing the [robot]”, ‘cause in my
idea it's like, what I'm trying to say is: I see the tank, I should turn and aim at
it, but it does that, but then it aims just off.

In response to this question, the researcher had to explain the radar system used
by the game. Had the language provided finer-grained events, this explanation could have
been avoided as the language itself could have supplied the explanation Morris was
seeking.

Conclusion
At the outset of the paper, the idea of a computationally literate society

championed by Wing and diSessa was introduced. While RoboBuilder on its own will
most likely not be the technological break through that results in this vision being
achieved, there is a chance that the findings from studying how novice programmers
interact with it can act as a harbinger for other educational tools and environments that
can start us down the path toward the computationally literate society envisioned by these
scholars. By recognizing the various roles primitives can play in supporting novices in
computationally reifying ideas, we as designers and educators can begin to develop new
languages and environments to support these different usages to scaffold the progression
of a learner from a novice to a computationally fluent individual. In doing so, we can
make progress toward this vision of a computationally literate 21st century.

SUPPORTING COMPUTATIONAL EXPRESSION

 19

References
diSessa, A. A. (2000). Changing minds: computers, learning, and literacy. Cambridge,

MA: MIT Press.
Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985). Direct manipulation interfaces.

Human-Computer Interaction, 1(4), 311–338.
National Research Council. (2010). Report of a Workshop on The Scope and Nature of

Computational Thinking. Washington, D.C.: The National Academies Press.
National Research Council. (2011). Report of a Workshop of Pedagogical Aspects of

Computational Thinking. Washington, D.C.: The National Academies Press.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic books.
Papert, S. (1996). An exploration in the space of mathematics educations. International

Journal of Computers for Mathematical Learning, 1(1). doi:10.1007/BF00191473
Parnafes, O., & diSessa, A. (2004). Relations between types of reasoning and

computational representations. International Journal of Computers for
Mathematical Learning, 9(3), 251–280.

Sherin, B. L. (2001). A comparison of programming languages and algebraic notation as
expressive languages for physics. International Journal of Computers for
Mathematical Learning, 6(1), 1–61.

Vygotsky, L. (1978). Mind in society: The development of higher psychological
processes. Harvard Univ Press.

Weintrop, D., Holbert, N., Wilensky, U., & Horn, M. S. (2012). Redefining
Constructionist Video Games: Marrying Constructionism and Video Game
Design. In C. Kynigos, J. Clayson, & N. Yiannoutsou (Eds.), Proceedings of the
Constructionism 2012 Conference. Athens, Greece.

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: A Program-to-Play Constructionist
Video Game. In C. Kynigos, J. Clayson, & N. Yiannoutsou (Eds.), Proceedings of
the Constructionism 2012 Conference. Athens, Greece.

Wertsch, J. V. (1991). Voices of the mind: A sociocultural approach to mediated action.
Harvard Univ Press.

Wilensky, U. (1999). GasLab: An extensible modeling toolkit for connecting micro-and
macro-properties of gases. Modeling and simulation in science and mathematics
education, 1, 151.

Wilensky, U., & Papert, S. (2006). Restructurations: Reformulations of knowledge
disciplines through new representational forms. (Manuscript in preparation).

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulating Knowledge
Disciplines through New Representational Forms. In I. Kallas (Ed.), Proceedings
of the Constructionism 2010 conference. Paris.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks.

Cognitive Science, 18(1), 87–122. doi:10.1016/0364-0213(94)90021-3

SUPPORTING COMPUTATIONAL EXPRESSION

 20

