
1 	

NetLogo: Design and implementation of a multi-agent modeling environment1

	

Seth Tisue Uri Wilensky
Seth@tisue.net uri@northwestern.edu

Center for Connected Learning and Computer-Based Modeling

Northwestern University, Evanston, Illinois
	

presented at Agent 2004, Chicago, October 2004
	

Slightly updated from:

Tisue, S., & Wilensky, U. (2004). NetLogo: Design and implementation of a multi-agent modeling
environment. Proceedings of the Agent 2004 Conference on Social Dynamics: Interaction,

Reflexivity and Emergence, Chicago, IL.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 This	
 version	
 has	
 been	
 slightly	
 updated	
 from	
 the	
 original	
 to	
 reflect	
 a	
 few	
 changes	
 to	
 NetLogo.	

2

	

	

Abstract
	

NetLogo [Wilensky, 1999] is a multi-agent program-
ming language and modeling environment for simu-
lating complex phenomena. It is designed for both
research and education and is used across a wide
range of disciplines and education levels. In this pa-
per, though, we focus on NetLogo as a tool for re-
search and for teaching at the undergraduate level
and higher. We outline the principles behind our de-
sign and describe recent and planned enhancements.

	

	

1 Overview

	

NetLogo is a multi-agent programming language and
modeling environment for simulating complex nat-
ural and social phenomena. It is particularly well
suited for modeling complex systems evolving over
time. Modelers can give instructions to hundreds
or thousands of independent “agents” all operating
concurrently, in order to explore connections between

	

micro-level behaviors of individuals and macro-level
patterns that emerge from their interactions.

NetLogo enables users to open simulations and
“play” with them, exploring their behavior under
various conditions. NetLogo is also an authoring
environment that is simple enough to enable students
and researchers to create their own models, even if
they are not professional programmers.

We designed NetLogo for both education and
research. There has been considerable research on
the use of multi-agent modeling in K–12 settings
(e.g., [Wilensky, 1995] [Resnick, 1996] [Wilensky &
Resnick, 1999] [Ionnidou et al., 2003] [Wilensky,
2003] [Wilensky & Reisman, 2006]). In this paper,
though, we focus on NetLogo as a powerful
research tool and as a tool for learners at the
undergraduate level and higher.

Historically, NetLogo is the next generation of
the series of multi-agent modeling languages
including StarLogo [Resnick & Wilensky, 1993]
[Resnick, 1994]. NetLogo is a standalone application

3 	

	

written in Java so it can run on all major computing
platforms. After five years of development, NetLogo
is a mature product that is stable and reliable. It is
freeware—anyone can download it for free and build
models without restriction. It comes with extensive
documentation and tutorials and a large collection
of sample models.

As a language, NetLogo is a member of the Lisp
family that supports agents and concurrency. Mobile
agents called “turtles” move over a grid of “patches,”
which are also programmable agents. All of the
agents can interact with each other and perform mul-
tiple tasks concurrently.

NetLogo is being used to build an endless variety
of simulations. Members of our user community have
turned turtles into molecules, wolves, buyers, sell-
ers, bees, tribespeople, birds, worms, voters, passen-
gers, metals, bacteria, cars, robots, neutrons, mag-
nets, planets, shepherds, lovers, ants, muscles, net-
workers, and more. Patches have been made into
trees, walls, terrain, waterways, housing, plant cells,
cancer cells, farmland, sky, desks, fur, sand, you
name it. Turtles and patches can be used to visu-
alize and study mathematical abstractions, too, or
to make art and play games. Themes addressed in-
clude cellular automata, genetic algorithms, positive
and negative feedback, evolution and genetic drift,
population dynamics, path-finding and optimization,
networks, markets, chaos, self-organization, artificial
societies and artificial life. The models all share our
core themes of complex systems and emergence.

In the following sections, we offer more detail on
all of these topics. We begin with a tour of the appli-
cation, then back up to outline its history. We then
give a more detailed account of the language itself.
NetLogo has recently become extensible; we explain
why and how. A technical discussion of how NetLogo
is implemented follows. Finally, we conclude with a
summary of work in progress and future plans.

	

	

	

2 Tour
	

In this section we give the reader a brief tour of the
NetLogo user interface and Models Library.

	

Figure 1: NetLogo’s user interface, with model Dif-
fusion Limited Aggregation (Wilensky, 1997a)

	

	

2.1 User interface

	

Figure 1 shows NetLogo’s user interface after opening
and running a model from the Models Library.

On the right is the graphics window, in which the
“world” of the model is made visible. In the model
shown, the turtles represent diffusing particles. They
wander randomly. When the model begins, there is
a single green patch in the center. When a particle
encounters a green patch, it “sticks” and turns green
itself. Over time a beautiful, branching aggregate
emerges.

On the left are model controls. In this model, they
include:

	

• Buttons for controlling the model. “Setup”

initializes the model and “Go” makes it run.
	

• Sliders that control model parameters. For
example, the “num-particles” slider controls
the number of particles that build the
aggregate.

	

Note that this is a simple model with only a few
controls. For more complicated models, other types
of controls are available including switches, choosers,
monitors, plots, text boxes, and output areas.

4

	

	

In this screen shot, we see only NetLogo’s “In-
terface” tab. The Interface tab is also an interface
builder. No firm distinction is made between using a
model and editing it—you can move, modify, or cre-
ate interface elements at any time. Agents can be
inspected and altered and the code for the model can
be changed without restarting the simulation. At the
bottom of the Interface tab is the “Command Cen-
ter,” in which NetLogo commands can be issued, even
while the model is running.

The other tabs are:
	

• Information, where documentation on the model
is found. This typically explains the rules be-
hind the model and suggests experiments for the
reader to try.

	

• Procedures, where the actual code for the model

is stored. A well- written model includes com-
ments in the code explaining how it works.

	

• Errors (normally disabled), where any incorrect

code can be viewed and fixed.
	

The order of the tabs is meant to follow a user’s typ-
ical engagement with a model. Usually people want
to dive right in and try out the model first in the
Interface tab, then move to the Information tab to
more fully understand what they’re seeing. Eventu-
ally, they can inspect the code in the Procedures tab
to understand the underlying rules and make modi-
fications and additions.

Figure 2 shows the Procedures tab containing the
complete code for the model. Language elements are
automatically color-coded so the code’s structure is
more clearly visible.

NetLogo can exchange data with other applica-
tions. The language includes commands that let you
read or write any kind of text file. There are also
facilities for exporting and importing data in stan-
dard formats. The complete state of the world can
be saved and restored in a format that can easily be
opened and analyzed with other software. Graphed
data can be exported for rendering and analysis with
other tools. The contents of the graphics window, or
of the model’s whole interface, can be saved as an
image, or you can record a series of such images as

	

	

Figure 2: Procedures tab with complete code for the
aggregation model.

	

	

a QuickTime movie. Finished models can be
published on the web or embedded in
presentations as Java applets.

NetLogo includes a still evolving tool called
BehaviorSpace (Wilensky & Shargel, 2002) that
allows “parameter sweeping,” that is, systematically
testing the behavior of a model across a range of
parameter settings. Figure 3 shows an example of
using BehaviorSpace to study a forest fire model.
Based on the experiment setup entered by the user,
BehaviorSpace automatically runs the model many
times while varying the “density” parameter. The
results show the effect of that parameter on the
amount of forest burned.

NetLogo supports not only the construc-
tion of wholly computer-based simulations, but also
what we call “participatory simulations” [Wilensky &
Stroup, 1999a], in which a group of stu- dents acts
out the behavior of a system, each student playing
the role of an individual element of the sys- tem. To
enable this, NetLogo includes a technology called
HubNet [Wilensky & Stroup, 1999b], which enables
communication between a NetLogo model

5 	

	

	

Figure 4: Nodes and edges, both represented using
turtles2 in the graphics window.

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 In	
 newer	
 versions	
 of	
 NetLogo,	
 edges	
 are	
 represented	
 by	
 their	
 own	
 agent-­‐type,	
 links	
 .	

6

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure 3: Using BehaviorSpace to study a forest fire
model. The density slider is varied from 40 to 80
by steps of 2. We measure the percentage of burned
trees at the end of each run. A run ends when no
“fire” agents remain. The graph at the bottom (gen-
erated from the BehaviorSpace output by means of
a graphing packgage) shows the results: an abrupt
phase transition at the critical density.

operating as a server and a set of clients, which may
be handheld devices or computers running HubNet
client software.

The most visible area of change in NetLogo 2.0 was
graphics. Now, turtles can be any size and shape and
be positioned anywhere. Turtles and patches can also
be labeled with text. Turtle shapes are vector-based
to ensure smooth appearance at any scale. These
changes have led to dramatic visual enhancement of
models. An example of graphics that weren’t possible
before is the use of turtles to represent both nodes
and edges in a network as in Figure 4.

Significant improvements made for the NetLogo 2.1
release include:

	

• Improved editor for turtle shapes, to make it
easier to customize how a model looks. This is
important for data visualization. See Figure 5.

	

• Parenthesis and bracket matching in the code
editor, to make editing complex code easier.

	

• Detecting individual keystrokes from code. This

7 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure 5: New, improved editor for turtle shapes.

makes highly interactive models (and games)
more usable.

	

• Adding let to the language, so new local vari-
ables can be introduced anywhere. This helps
modelers write clearer, more concise code.

	

	

2.2 Models Library

	

Just as important as NetLogo itself are the materi-
als it comes with. We’ve devoted almost as much
development effort to our Models Library as to the
NetLogo application.

The Models Library contains more than 150 pre-
built simulations that can be explored and modified.
Figure 6 shows the structure of the Models Library.
The simulations address many content areas in the
natural and social sciences, including biology and
medicine, physics and chemistry, mathematics and
computer science, and economics and social psychol-
ogy. All of the models include an explanation of the
subject matter and the rules of the simulation and
suggestions for activities, experiments, and possible
extensions. To aid learning and encourage good pro-
gramming practice, the code for the simulations is
clear, elegant, and well commented.

	

Figure 6: Structure of the Models Library.
	

	

Our goal for the library is to include as many as
possible of the standard, well-known “chestnuts” of
complex systems science. This serves several pur-
poses:
	

• Researchers, already knowing the ideas behind
the models, can easily learn the language by
studying them.

	

• Modelers can usually find something in the li-

brary to base a new model on, rather than start-
ing from scratch.

	

• These well-known examples are introduced to a

new generation of students of complex systems
science.

	

The Models Library also includes a “curricular

models” section. It contains groups of models that
are intended to be used together in an educational
setting as part of a curricular unit. Most of them
include extra associated curricular materials (above
and beyond that which we provide with all of our
models).

In addition to the 140 simulations, the library also
includes several dozen “code examples.” These are
not full simulations, but brief demonstrations of Net-
Logo features or coding techniques.

8

	

3 History and audience
	

In this section we summarize NetLogo’s history and
how it came to be a tool for both education and re-
search, and we explain the benefits of addressing both
audiences.

	

	

3.1 Origins

	

NetLogo originates in a blend of StarLisp
[Lasser & Omohundro, 1986] and Logo
[Papert, 1980]; Logo is itself a member of the
Lisp family. From Logo, it inherits the “turtle.” In
traditional Logo, the programmer controls a single
turtle; a NetLogo model can have thousands of them.
NetLogo also follows Logo’s philosophy of ease of
use, providing a “low threshold” of entry for new
users. From StarLisp, a parallel Lisp of the 1980’s,
NetLogo inherits multiple agents and concurrency.

NetLogo derives from our experience with our
earlier environment, StarLogoT [Wilensky, 1997].
Even though the original incarnation of StarLogo
[Resnick & Wilensky, 1993, Resnick, 1994] was on a
supercomputer, it had always been primarily in-
tended for use in schools.1 But StarLogoT became
very popular among researchers. So with NetLogo,
we now aim more explicitly to satisfy the needs of
both audiences. In the transition from StarLogoT to
NetLogo, we redesigned both the language and the
user interface. NetLogo includes almost all of Star-
LogoT’s features and many new ones. Many of the
new features of NetLogo are aimed at research users.

	

	

3.2 “Low threshold”

	

All the multi-agent Logos have adopted design prin-
ciples from the Logo language. A central principle
is “low threshold, no ceiling.” Low threshold means
new users, including those who never programmed
before, should find it easy to get started. No ceil-
ing means the language shouldn’t be limiting for ad-
vanced users. We wanted NetLogo to be just as pop-

	

1 There were several different early implementations of Star-

Logo in the first part of the 1990’s. The supercomputer version
was Connection Machine StarLogo. Later came MacStarLogo
[Begel, 1999], of which StarLogoT is a superset.

	

ular with researchers as StarLogoT had been, so that
meant devoting significant attention to the “no ceil-
ing” side of the principle. Logo’s reputation as a
language for schools doesn’t do justice to its ample
power, as demonstrated in [Harvey, 1997].

We believe researchers should care about “low
threshold” too. Even for such users, NetLogo’s in-
heritance from educational languages brings several
benefits. First, in universities there is substantial
overlap between teaching and research, and if a single
tool can serve both needs there are opportunities for
synergy. Second, when code is easier to write and
easier to read, everyone benefits. Models become
easier to build; often researchers can build models
themselves when otherwise they would have to hire
programmers. And models become more easily un-
derstood by others; this is vitally important in order
for researchers to effectively communicate their re-
sults to others, verify each other’s results, and build
upon each other’s work. The goals of scientific mod-
eling are compromised if programs are long, cryptic,
and platform-specific. A NetLogo model is less likely
to suffer these problems than one written in common
general-purpose languages like Java and C++.
	

3.3 The integrated approach

	

NetLogo is its own programming language, em-
bedded in an integrated, interactive modeling
environment. The integrated approach to multi-
agent modeling originates with StarLogo, was
refined in StarLogoT and NetLogo, and has also
been followed by other all-in-one agent- based
modeling solutions such as AgentSheets [Repenning,
Ioannidou & Zola, 2000] and Breve [Klein, 2002].
“Toolkits” or libraries such as Swarm [Minar,
Burkhart, Langton & Askenazi, 1996] and Repast
[Collier & Sallach, 2001] take a different approach;
they make simulation facilities available to programs
written in a general-purpose language such as Java.

We see the integrated approach as essential to
achieving our “low threshold” goal. The difficulty
of programming in Java or C++ isn’t due only to
the language itself. It’s also due to the complication
of the environments (whether command line based

9 	

or GUI based) in which programming in those lan-
guages is normally done. When you add in the added
complexity of getting the environment to talk to a
modeling library or toolkit, the initial barrier for en-
try for new programmers becomes quite high—even
before they start dealing with the difficulties of the
languages themselves.

In contrast, the NetLogo environment allows a
smooth, almost unnoticeable transition from explor-
ing existing models into programming. NetLogo’s
user interface makes no firm distinction between us-
ing a model and editing it. Even the smallest amount
of knowledge of the language is immediately useful in
creating buttons and monitors or typing commands
into the command center, in order to better inspect
and control an existing model. Altering the model’s
rules is only as far away as a click on the Procedures
tab.

	

	

3.4 Development history

	

NetLogo has been under development since 1999.
Since then we’ve averaged two to three substantial
new releases per year. Version 2.0.2 (August 2004)
is mature, stable, and reliable. As of October 2004
version 2.1 is available in beta form and we expect a
final release soon. Even though our user base has ex-
panded, the rate of incoming bug reports has slowed
to a trickle. Models now run much faster than in ear-
lier versions—our users now find it fast enough for
most purposes.

	

	

3.5 Acceptanc

e
	

We have much evidence that acceptance of NetLogo
in the research and education communities is wide
and growing. The software has been downloaded tens
of thousands of times. Currently, there are about
50 downloads per day. Our announcements list has
over 5,000 members. The NetLogo discussion group
(http://groups.yahoo.com/group/netlogo-users/)
has over 1,600 members and averages about 100
posts per month. Traffic on the discussion group has
increased fivefold since 2002. Several organizations
have independently conducted workshops on NetL-
ogo for both researchers and teachers. In the summer

of 2004, we held our own first annual workshop at
Northwestern. A number of university classes are
now taught, in whole or in part, using NetLogo.
Some of these classes and workshops have rich
collections of associated materials available online.
The NetLogo web site has an area where users can
upload models to share with the user community.
More than 100 models have been uploaded so far.

	

	

4 Language
	

In this section, we describe the NetLogo program-
ming language itself. For further information on the
NetLogo language, consult the NetLogo User Man-
ual [Wilensky, 1999], particularly the Programming
Guide and Primitives Dictionary sections.

	

	

4.1 Language fundamentals

	

As a language, NetLogo adds agents and concurrency
to Logo. Logo, as originally developed by Seymour
Papert and Wally Feurzeig in 1968, is derived from
Lisp, but has a friendlier syntax. Logo was designed
as a programming language usable by children as well
as adults and is still popular today for that purpose.
It is a powerful general-purpose computer language.

Although Logo isn’t limited to graphical applica-
tions, it is best known for its “turtle graphics,” in
which a virtual being or “turtle” moves around the
screen drawing figures by leaving a trail behind it.
NetLogo generalizes this concept to support hundreds
or thousands of turtles all moving around and inter-
acting. The world in which the turtles move is a grid
of “patches,” which are also programmable. Collec-
tively, the turtles and patches are called “agents”.
All agents can interact with each other and perform
multiple tasks concurrently. NetLogo also includes
a third agent type, the “observer”. There is only
one observer. In most models, the observer gets the
ball rolling by issuing instructions to the turtles and
patches. Different “breeds” of turtle may be defined,
and different variables and behaviors can be associ-
ated with each breed.

Some models use the patch world just as a lat-
tice. For example, in a cellular automaton, there are

10

	

no turtles, only patches. And in some other mod-
els, turtles move on the lattice (from patch center
to patch center). But the patches are not just lat-
tice sites—they are square sections of a continuous
two-dimensional space. Turtle coordinates are float-
ing point values, so a turtle may be positioned any-
where within a patch. For example, in the aggrega-
tion model shown above, the aggregate is made up of
lattice sites, but particles move freely on the plane.

There are many language elements for talk-
ing about space and spatial relations: towards,
distance, neighbors, forward and back, left and
right, size, heading, patch-ahead, diffuse, and
so on. Some of these come from Logo, while others
are new.

An important NetLogo language feature, not found
in its predecessors, is “agentsets,” or collections of
agents. For example, the set of all turtles and the
set of all patches are agentsets. You can also make
custom agentsets on the fly, for example the set of all
red turtles, or a column of patches (the set of patches
with a given X coordinate). Agentsets are responsible
for much of NetLogo’s expressive power.

In addition to special constructs to support multi-
agent modeling, NetLogo also includes standard pro-
gramming constructs such as procedures, loops, con-
ditionals, recursion, strings, lists, and so forth. Both
integer math and double-precision IEEE floating
point math are supported. The run and runresult
commands can be used to execute code constructed
on the fly.

	

	

4.2 NetLogo as Logo

	

Although there is no single agreed upon standard for
the Logo language, NetLogo shares enough syntax,
vocabulary, and features with other Logos to earn the
Logo name. Still, some important differences from
most Logos include:

	

• We have no symbol data type. Eventually, we

may add one, but since it is seldom requested,
it may be that the need doesn’t arise much in
agent-based modeling. In most situations where
traditional Logo would use symbols, we simply
use strings instead.

• Control structures such as if and while are spe-
cial forms, not ordinary functions. You can’t de-
fine your own special forms.

	

• As in most Logos, functions as values are not

supported. Most Logos provide similar function-
ality, though, by allowing passing and manipu-
lation of fragments of source code in list form.
NetLogo’s capabilities in this area are presently
limited. A few of our built-in special forms
use UCBLogo-style “templates” to accomplish a
similar purpose, for example, sort-by [length
?1 < length ?2] string-list. In some cir-
cumstances, using run and runresult instead is
workable, but they operate on strings, not lists.

	

There are several reasons for those omissions. They
are partly due to NetLogo’s descent from StarLogoT,
which as discussed above needed to be very lean.
Many of StarLogoT’s limitations have already been
addressed in NetLogo (for example, NetLogo has
agentsets and double-precision floating point math),
but some of the “leanness” remains. This leanness
is not only historical, though. Efficiency is always a
vital goal for multi-agent systems, since many mod-
elers want to do large numbers of long model runs
with as many agents as they can. It is easiest to con-
struct a fast engine for a simple language, and, from a
language design perspective, omitting advanced lan-
guage features and prohibiting the definition of new
special forms may actually be desirable for a lan-
guage in which readability and sharing of code is
paramount. We weigh these tradeoffs carefully as we
continue to expand the language.

	

	

4.3 Reproducibility

	

One of our core design goals for NetLogo is that re-
sults be scientifically reproducible, so it is important
that models operate deterministically. NetLogo is
a “simulated parallel” environment. In true paral-
lel computing, programs must be constructed very
carefully to avoid nondeterminism. We think this
is too great a burden for novice programmers, so
concurrency in NetLogo operates deterministically.
That means that if you “seed” the random number

11 	

generator the same way, then a NetLogo model al-
ways follows the same steps in the same order and
produces the exact same results, regardless of what
computer you run it on. Java’s underlying platform-
independent math libraries help assure consistency.

	

	

5 Extensibility
	

In this section, we describe how NetLogo has recently
become extensible through the addition of new “ex-
tensions” and “controlling” facilities.

Earlier, we described NetLogo as an integrated or
“all-in-one” environment. The full NetLogo envi-
ronment bundles together many components: a pro-
gramming language, a compiler, an interpreter, a syn-
tax highlighting editor, an interface builder, a graph-
ics engine, BehaviorSpace, and so on. The down-
side of the all-in-one approach is that “all-in-one” can
turn into “all-or-nothing.” We run the risk that if one
component doesn’t suit a user’s needs, then that user
won’t be able to use any of the components, because
they’re all tied together.

We want to avoid this all-or-nothing trap by let-
ting users extend or replace parts of NetLogo that
don’t suit their purposes. That way even users who
have unique needs, or just needs we didn’t think of
or haven’t gotten around to addressing yet, can build
what they need themselves in Java, and they will still
get the benefit of the rest of our work. These new
APIs are steps towards that goal. They lift the “ceil-
ing” on NetLogo’s usefulness and range of applica-
tions. The integrated NetLogo environment provides
core functionality; our APIs will allow advanced users
to move outside that core.

In making NetLogo extensible, we are bridging the
gap between integrated modeling environments
(easy to use, but potentially restricting) and model-
ing toolkits (more flexible, but much harder to use).

	

	

5.1 Extensions API

	

NetLogo has always been a full-fledged programming
language, so users may write procedures in NetLogo
and then use them just like built-in commands. But
since NetLogo 2.0.1 we have offered an application

programmer’s interface (API) for extensions so that
users can add new elements to the language by im-
plementing them directly in Java. This lets users add
whole new types of capabilities to NetLogo.

We have been using this new API internally for
a while now, and have written extensions that let
NetLogo:

• Talk to other NetLogos running on different com-
puters, peer-to-peer

	

• Pull down data from a web server
	

• Make sounds and music using MIDI
The sound extension is now included with NetLogo.
Full Java source code for it, and a number of other
sample extensions, are available from our website.
Our hope is that extension authors will share their
extensions with the wider user community, so that
everyone can benefit from their efforts.
	

5.2 Controlling API

	

We also offer a “controlling” API which allows ex-
ternal code to operate the NetLogo application by
remote control, so to speak. This API includes calls
for opening a model and running any NetLogo com-
mands. This permits users willing to do a little
light Java programming to automate large numbers
of model runs from the command line. This is useful
both on a single machine and when distributing runs
across a cluster. We already provide an automated
parameter-sweeping tool called BehaviorSpace, but
the API is still be useful in situations where Behav-
iorSpace’s present capabilities aren’t sufficient.

The API currently requires the full NetLogo user
interface to be present, but we are working on re-
moving this limitation so that models can be run
“headless” from the command line. (On X11-based
systems, it is possible right now to work around this
limitation using X11’s ‘virtual framebuffer” support.)

	

	

6 Implementation

	

In this section, we explain how how we have con-
structed the NetLogo software. This section is more
technical than the others.

12

	

6.1 Background: StarLogoT
	

StarLogoT succeeded in attracting a large user base
from a range of disciplines, but it had important tech-
nical limitations that we wanted to address.

The biggest limitation of StarLogoT was that it
only ran on Macintosh computers. At the time de-
velopment on StarLogoT’s precursors began, the in-
troduction of Java had not yet brought cross-platform
development of GUI applications within easy reach.
Also, the target audience was schools, so the software
needed to be compact and fast enough to run even
on hardware that by today’s standards was absurdly
underpowered. Putting thousands of agents on such
machines was only possible if the underlying engine
was written in assembly language, which is of course
platform-specific.

The need to be fast and small resulted in other lim-
itations as well. Math in StarLogoT was fixed point,
not floating point, with only a few digits of preci-
sion. Many arbitrary limits were imposed in order
for crucial data structures to fit within a small, fixed
number of bits. For example, a model couldn’t have
more than 16,384 turtles, or a patch grid bigger than
251x251, or a stack depth of more than 64.

StarLogoT’s language design was constrained as
well by what could reasonably be implemented. The
need for efficiency led StarLogoT’s architecture to be-
come quite complicated. It included three different
virtual machines for our three agent types (observer,
turtles, and patches). Different agent types had dif-
ferent capabilities and different rules for acting in
parallel; this was confusing to users and some of the
restrictions placed on user programs were severe.

	

	

6.2 Starting over

	

Because of these limitations, we chose to start over
and write our new environment, NetLogo, from
scratch. We bet that Java would permit us to build a
cross-platform application that was reasonably fast.
Java doesn’t always completely live up to its “write
once, run anywhere” promise, but comes close enough
of the time that it brought cross-platform develop-
ment within reach for our small development team.
We knew that Java was slower than assembly lan-

guage, but hoped that on newer, faster machines it
wouldn’t matter too much. The issue of speed is dis-
cussed further below.

Using Java offered the additional benefit that in-
dividual NetLogo models could be embedded in web
pages and run in a browser, without the end user
needing to download and install an application. (Ini-
tially, we even allowed the full NetLogo authoring
environment to run as an applet in a web browser,
but later we abandoned this option as not worth the
extra development effort.)

Since we were starting from scratch anyway, we
took the opportunity to redesign the language to fur-
ther both our “low threshold” and “no ceiling” goals.
Sometimes we had to weigh tradeoffs between those
two goals; in other cases, such as agentsets, we were
able to reduce barriers to novice entry while also mak-
ing the language more expressive and powerful. In
doing so, we also tried to be compatible with stan-
dard, popular Logo implementations whenever pos-
sible and reasonable. In particular, we tried not to
stray too far from StarLogoT, so our existing user
base wouldn’t find the transition too painful.

	

	

6.3 Java

	

NetLogo is written entirely in Java. Java was chosen
because both the core language and the GUI libraries
are cross-platform, and because modern Java virtual
machines have use JIT (just in time) compiler tech-
nology to achieve relatively high performance.

NetLogo 1.3 supported earlier Java versions going
back to Java 1.1, but for NetLogo 2.0 we decided to
require Java 1.4. The major reasons for choosing Java
1.4 for the new version were as follows:
	

• The new language version includes much richer
libraries. It was increasingly difficult to find de-
velopers used to working within the limitations
of the antiquated version.

	

• More recent VM’s are higher quality. Before we

abandoned Java 1.1, constantly working around
bugs in the various 1.1 VM’s was a serious drag
on our development efforts.

13 	

	

• Unlike Java 1.1, Java 1.4 offers “strict” math
libraries which guarantee identical, reproducible
results cross-platform.

	

• Leaving Java 1.1 behind allowed us to switch

GUI toolkits, from the old AWT toolkit to the
newer Swing toolkit, which has numerous advan-
tages, including better look & feel (Figure 7).

	

• After a long wait, Apple finally released a high

quality Java 1.4 implementation for Mac OS X.
	

• Even with the new VM, Apple’s support for
AWT-based applications on Mac OS X was poor.
Mac support is important to us, but a high qual-
ity implementation on the Mac was simply im-
possible without switching to Swing.

	

• Since Java 1.4 is available for all the major plat-

forms for which 1.3 is also available (not counting
Mac OS X 10.0 and 10.1), it seemed unnecessary
to be backwards compatible with Java 1.3.

	

Regrettably, switching to Java 1.4 meant dropping
support for users of Windows 95 and MacOS 8 and
9, since no Java 1.4 implementation is available for
those operating systems. However, we continue to
offer support and bugfixes for NetLogo 1.3, so those
users aren’t left out in the cold.

	

	

6.4 Speed

	

Early versions of NetLogo were slow, but especially
since version 1.3, models run much faster. Most of
our users now find NetLogo fast enough for most pur-
poses. Nonetheless, we plan to continue to improve
NetLogo’s speed, since agent-based modeling is a field
in which users always benefit from more speed.

StarLogoT was written partially in assembly lan-
guage and was highly performance tuned. NetLogo
is written in Java and the NetLogo language is much
more flexible and feature rich than StarLogoT. There-
fore, you would expect NetLogo to be slower. Surpris-
ingly, that isn’t always or even usually true. Which
environment is faster depends on the nature of the
model. In general, StarLogoT is still faster for mod-
els with very simple code and large numbers of agents.

	

Figure 7: Our new, Swing-based user interface. Also
illustrates new graphics features.

	

	

But NetLogo is usually faster for models with com-
plex code and smaller numbers of agents.

The surprising fact that StarLogoT is not always
faster can be accounted for by reference to StarL-
ogoT’s unique architecture. As mentioned above, the
StarLogoT engine was divided into three virtual ma-
chines: one for the observer, written in Lisp, and
two for the turtles and patches, written in assem-
bly language. The turtle and patch machines were
extremely fast, but crossing the boundaries between
the different machines was slow. With simpler code
and more turtles and patches, overall speed benefited
more from the speed of the turtle and patch virtual
machines. In contrast, NetLogo’s internal architec-
ture is much more uniform. A single virtual machine
handles all three agent types. Therefore, there is
no special penalty associated with complex code and
no special benefit associated with large numbers of
agents.

NetLogo is a hybrid compiler/interpreter. To im-
prove performance, we don’t interpret the user’s code
directly. Instead, our compiler analyzes, annotates,
and restructures it into a form that can be interpreted
more efficiently.

Earlier versions of NetLogo (1.0 and 1.1) compiled

14

	

user code into a form suitable for execution by a
virtual machine which was stack-based. However,
we discovered through profiling that making the vir-
tual machine stack-based actually hurt performance
rather than helping it. So, in our current compiled
representation, each command is tree-structured so
that intermediate results are stored on the Java VM’s
own stack instead of our stack. This change resulted
in an approximately twofold performance gain. Other,
smaller engine performance gains since Net- Logo
1.0 came from profiling the engine code and
addressing inefficiencies in object creation, memory
usage, and other areas.

If we want to further increase NetLogo’s speed in
the future, the most promising approach, relative to
the likely development effort required, seems to be
to compile NetLogo code to Java byte code instead
of our own custom intermediate representation. In-
formal tests indicate that this would likely result in
at least a twofold improvement in speed. We also
have considered replacing the Java-based engine with
a native one, perhaps written in C. However, general
opinion recently is that JITted Java code isn’t always
slower than C code anymore, so we’re not certain if
this approach would be fruitful.

So far we have been discussing the speed of Net-
Logo’s core computational engine. But NetLogo’s
overall performance doesn’t depend only on engine
speed. There’s also graphics speed to consider.
Whether engine speed or graphics speed dominates
varies widely from model to model—some are 90%
engine, others are 90% graphics. The latter kind of
model can always be sped up by using NetLogo’s
graphics “control strip” to temporarily shut off
graphics altogether, but that doesn’t mean graphics
performance is unimportant.

Switching our GUI framework from AWT to Swing
raised problems for graphics performance. Prior to
NetLogo 2.0, graphics window updates were “incre-
mental,” that is to say, only agents that moved or
changed were redrawn. Incremental painting on-
screen, instead of to an offscreen buffer, is not sup-
ported under Swing, and on Mac OS X, the perfor-
mance of painting offscreen was unacceptable. As
an experiment, we switched from incremental paint-
ing to always redrawing the complete contents of the

graphics window every time, fearful that the change
would hurt performance. We were pleasantly sur-
prised; on Macs graphics performance actually in-
creased, and on Windows, the speed penalty was neg-
ligible.

Abandoning incremental updates freed NetLogo’s
graphics capabilities enormously. Previously, in or-
der to make incremental updates possible, the graph-
ics window was limited in several important respects.
Even though NetLogo’s world is continuous, turtles
in the graphics window were always the same size and
appeared centered on their patches, like chess pieces.
Since patches did not overlap, it was possible to re-
draw each patch incrementally and separately. But
if incremental updates are no longer performed, then
there is no longer any reason to align turtles with the
grid. So now, in NetLogo 2.0, turtles can be any size
and shape and be positioned anywhere. Turtles and
patches can also be labeled with text. Turtle shapes
are vector-based to ensure smooth appearance at any
scale. These features had actually been available in
earlier NetLogo versions, but were slow and buggy.
Now they are fast and reliable. These changes have
led to dramatic visual enhancement of models (Fig-
ure 7, Figure 8).
	

6.5 Concurrency

	

In many respects the NetLogo engine is an ordinary
interpreter. But it also has some unusual features
because of the need to support concurrent processes.
Concurrency in NetLogo has two sources.

The first kind of concurrency we support is con-
currency among agents. If you use the command
forward 20 to ask a set of turtles to move forward
20 steps, we don’t want one turtle to win the race
before the others have even left the starting line. So,
we have all the turtles take onestep together, then
they all take another step, and so forth. Ulti-
mately, the NetLogo engine is single-threaded, so the
turtles must move one at a time in some order; they
can’t really move simultaneously. So the engine “con-
text switches” from agent to agent after each agent
has performed some minimal unit of work, called a
“turn.” Because the timing of context switches is de-
terministic, the overall behavior of the model remains

15 	

	

	

	

	

	

Figure 8: The Ants model (Wilensky, 1997), with
and without new graphics features.

deterministic. We only update the screen after all the
agents have had a turn; this visually preserves the il-
lusion of simultaneity. The NetLogo User Manual
contains a more detailed discussion of the timing of
context switches between agents. We provide a com-
mand, without-interruption, which the program-
mer can use to prevent unwanted switching.

The second kind of concurrency we support is con-
currency among the different elements of the NetL-
ogo user interface which can initiate the execution of
code. Currently these are: buttons, monitors, and
the Command Center. Buttons and monitors con-
tain code entered by the model author, and the user
may enter commands into the Command Center at
any time. In all three cases, a “job” is created and
submitted to the engine to request that some code
be executed by some agents. Jobs are akin to what
operating systems call “threads” or “processes.” We
use the word “job” to avoid confusion. At the op-
erating system level, the NetLogo application is one
process, and the NetLogo engine is one thread within
that process.

When multiple jobs are active, the engine must
switch between them, just as it switches between the
agents within a job. The rule followed is to switch
from job to job once every agent in the first job has
had a turn. Here, the NetLogo engine is taking on a
task more typically associated in computer scientists’
minds with the process scheduler in a cooperatively
multi-tasked operating system rather than with a lan-
guage interpreter.

Concurrency is still an active area of concern for
us. We’re not sure we’ve arrived at final decisions
on how best to support it. We’re presently revisiting
and rethinking our current design choices with an eye
towards both helping newcomers avoid mistakes and
increasing the power available to advanced users.

	

	

7 Conclusion

	

We have already touched upon some goals for future
NetLogo versions, such as increased speed and head-
less operation. Here are some other enhancements for
which we already have working prototypes:

	

• 3-D NetLogo, including language extensions and

16

	

	

OpenGL-based 3-D graphics. Some 3-D models
are already possible, but language support will
make them easier to build and OpenGL will en-
able much higher quality 3-D visualization. This
is a very big job, but we have a working proto-
type already (see Figure 9).

	

• Support for different lattices and world topolo-

gies, with no extra code required. Currently, the
NetLogo patch world “wraps” in the X and Y
directions, forming a torus. Some language ele-
ments are available in both wrapping and non-
wrapping versions. Typically, models that don’t
want wrapping use the outer layer of patches as a
barrier. In a future version, we plan to make
wrapping a global option that can be turned off.
This is an example of an alternate world
topology. Soon, we will also support even-
numbered grid sizes and arbitrary placement of
the origin of the coordinate plane. In the longer
term, we would like to support unbounded plane
models. We already have some models that op-
erate on a hexagonal lattice, but their code can’t
currently be made as concise as we would like.

	

• Easier, more flexible randomized agent schedul-

ing. (Random scheduling is already possible by
adding extra code, but will be built in.)

	

• Improved plotting requiring less additional code

in the procedures tab. Separating code for agent
behaviors from code for data generation and vi-
sualization code will improve clarity and concise-
ness of models.

	

• A profiling tool for identifying speed bottlenecks

in model code.
	

Networks are currently a very active area of re-
search in the agent-based modeling community. Net-
work models are already possible in NetLogo, but we
want to make them easier to build, including mak-
ing it easier to leverage the capabilities of existing
network analysis and visualization tools.

We are also adding support to NetLogo for ag-
gregate modeling. Aggregate modeling, also known
as systems dynamics modeling, has historically been Figure 9: Models depicted are Bouncing Balls 3D,

Followers 3D, and Life 3D (Wilensky, 2002).

17 	

supported by separate, non-agent-based modeling
tools such as STELLA [Richmond & Peterson, 1990].
We are incorporating similar finite difference engine
technology into NetLogo so that researchers and stu-
dents can investigate systems using agent-based and
aggregate techniques in tandem.

There are ongoing efforts within our research group
to further explore NetLogo’s potential for research
and education. Of particular relevance to NetLogo’s
future as a research tool are these major ongoing
long-term projects:

	

• Integrated Simulation and Modeling Environ-

ments (ISME), a project in collaboration with
the University of Texas which uses NetLogo to
enact “participatory simulations” [Wilensky &
Stroup, 1999a] in both classroom and research
contexts.

	

• Procedural Modeling of Cities, a project in

which agents “grow” virtual cityscapes for use
in architecture, urban planning, training, and
entertainment. Preliminary results from the
model are shown in Figure 10 [Lechner,
Watson, Wilensky & Felsen, 2003].

	

• Modeling School Reform, a project to build mod-

els of the potential effects of educational pol-
icy decisions, to assist school leaders and policy
makers. This work will include social network
modeling and analysis.

	

These projects will drive substantial expansion of
NetLogo’s ability to support large, ambitious model-
ing efforts. We also have a number of other projects,
focused on the use of NetLogo in educational con-
texts.

	

	

8 Acknowledgments

	

Thanks to the members of our user community, and
to all past and present members of the Center for
Connected Learning and Computer-Based Modeling,
for all of their contributions to NetLogo.

Portions of this paper were loosely adapted from
the NetLogo User Manual [Wilensky, 1999]. We

	

	

	

	

	

Figure 10: Growth of a simulated city (Lechner et al,
2003). Left column represents land use, right column
represents population density.

18

	

thank Owen Densmore for contributing the network
layout model used to produce Figure 4.

We gratefully acknowledge the support of the Na-
tional Science Foundation.

	

	

References

	

[Begel, 1999] Begel, Andrew, “StarLogo: Building

a Modeling Construction Kit for Kids”, Proceed-
ings of the Workshop on Agent Simulation: Ap-
plications, Models, and Tools.

	

[Collier & Sallach, 2001] Collier, N. & Sallach,

D.; Repast. University of Chicago.
http://repast.sourceforge.net/

	

[Harvey, 1997] Harvey, Brian, Computer Science

Logo Style, 2nd ed., vols. 1–3, MIT Press.
	

[Ionnidou et al., 2003] Ioannidou, Andri; Repen-
ning, Alexander; Lewis, Clayton; Cherry,
Gina; and Rader, Cyndi; “Making Construc-
tionism Work in the Classroom”, International
Journal of Computers for Mathematical Learn-
ing, Volume 8, Issue 1, pp. 63-108.

	

[Klein, 2002] Klein, Jon, “Breve: a 3D simulation

environment for the simulation of decentralized
systems and artificial life”, Proceedings of Arti-
ficial Life VIII, the 8th International Conference
on the Simulation and Synthesis of Living Sys-
tems, MIT Press.

	

[Lasser & Omohundro, 1986] Lasser, Clifford;

Omohundro, Stephen M.; The Essential Star-
lisp Manual, Thinking Machines Corporation.

	

[Lechner, Watson, Wilensky & Felsen, 2003]

Lechner, Thomas; Watson, Ben; Wilensky,
Uri; and Felsen, Martin. “Procedural Mod-
eling of Land Use in Cities”. Proceedings of
Midgraph.

	

[Minar, Burkhart, Langton & Askenazi, 1996]

Minar, Nelson; Burkhart, Roger; Langton,
Chris; and Askenazi, Manor; “The Swarm
Simulation System: A Toolkit for Building

Multi-agent Simulations.” Santa Fe Institute
working paper 96-06-042.

	

[Papert, 1980] Papert, Seymour, Mindstorms:

Children, Computers, and Powerful Ideas, Basic
Books.

	

[Repenning, Ioannidou & Zola, 2000] Repenning,

Alexander; Ioannidou, Andri; and Zola,
John; “AgentSheets: End-User Programmable
Simulations”, Journal of Artificial Societies and
Social Simulation vol. 3, no. 3.

	

[Resnick, 1994] Resnick, Mitchel, Turtles, Termites

and Traffic Jams: Explorations in Massively
Parallel Microworlds, MIT Press.

	

[Resnick, 1996] Resnick, Mitchel, “Beyond the

Centralized Mindset”, Journal of the Learning
Sciences 5(1): 1-22.

	

[Resnick & Wilensky, 1993] Resnick, Mitchel; and

Wilensky, Uri, “Beyond the Deterministic,
Centralized Mindsets: New Thinking for New
Sciences”, American Educational Research As-
sociation.

	

[Richmond & Peterson, 1990] Richmond, Barry;

and Peterson, Steve. STELLA II. High
Performance Systems, Inc.

	

[Wilensky, 1995] Wilensky, Uri, “Paradox, Pro-

gramming and Learning Probability”, Journal of
Mathematical Behavior Vol. 14, No. 2, p 231-
280.

	

[Wilensky, 1997] Wilensky, Uri, StarLogoT, Cen-

ter for Connected Learning and Computer-
Based Modeling, Northwestern University.
http://ccl.northwestern.edu/cm/starlogot/

	

[Wilensky, 1999] Wilensky, Uri, NetLogo (and

NetLogo User Manual), Center for
Connected Learning and Computer- Based
Modeling, Northwestern University.
http://ccl.northwestern.edu/netlogo/

	

[Wilensky, 2002] Wilensky, Uri, “Modeling Na-

ture’s Emergent Patterns with Multi-agent Lan-
guages”, Proceedings of EuroLogo 2002.

19 	

[Wilensky, 2003] Wilensky, Uri, “Statistical Me-
chanics for Secondary School: The GasLab
Multi-Agent Modeling Toolkit”, International
Journal of Computers for Mathematical Learn-
ing, Volume 8, Issue 1, special issue on agent-
based modeling.

	

[Wilensky & Reisman, 2006] Wilensky, Uri; and

Reisman, Kenneth; “Thinking Like a Wolf, a
Sheep or a Firefly: Learning Biology through
Constructing and Testing Computational
Theories”, Cognition & Instruction. 24(2), 171-
209.

	

[Wilensky & Resnick, 1999] Wilensky, Uri; and

Resnick, Mitchel; “Thinking in Levels: A Dy-
namic Systems Approach to Making Sense of the
World”, Journal of Science Education and Tech-
nology, vol. 8, no. 1.

Wilensky, U., & Shargel, B. (2002). Behaviorspace

[computer software]. Evanston, IL: Center for
Connected Learning and Computer Based
Modeling, Northwestern University.
http://ccl.northwestern.edu/netlogo/behaviorspace

	

[Wilensky & Stroup, 1999a] Wilensky, Uri; and
Stroup, Walter; “Learning through Participa-
tory Simulations: Network-based Design for Sys-
tems Learning in Classrooms”, Proceedings of
the Computer Supported Collaborative Learn-
ing Conference, Stanford University.

	

[Wilensky & Stroup, 1999b] Wilensky, Uri; and

Stroup, Walter; HubNet. Center for Connected
Learning and Computer-Based Modeling,
Northwestern University.
http://ccl.northwestern.edu/netlogo/hubnet.html

Model References

Wilensky, U. (1997a). Netlogo DLA model. Evanston,

IL: Center for Connected Learning and Computer-
Based Modeling, Northwestern University.
http://ccl.northwestern.edu/netlogo/models/DLA

20

	

Wilensky, U. (1997b). Netlogo Ants model. Evanston, IL:
Center for Connected Learning and Computer-
Based Modeling, Northwestern University.
http://ccl.northwestern.edu/netlogo/models/Ants

Wilensky, U. (2003). Netlogo Dining Philosophers

model. Evanston, IL: Center for Connected
Learning and Computer-Based Modeling,
Northwestern University.
http://ccl.northwestern.edu/netlogo/models/DiningP
hilosophers .

Wilensky, U. (2002). NetLogo Bouncing Balls Example

3D model.
http://ccl.northwestern.edu/netlogo/models/bouncin
gballsexample3D . Center for Connected Learning
and Computer-Based Modeling, Northwestern
University, Evanston, IL.

Wilensky, U. (2002). NetLogo Follower 3D model.
http://ccl.northwestern.edu/netlogo/models/Follower3D.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

Wilensky, U. (2002). NetLogo Life 3D model.
http://ccl.northwestern.edu/netlogo/models/Life3D.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

