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ABSTRACT 
In the context of a design-based research effort to develop a 
technology-enabled constructivist algebra unit, a new activity 
architecture emerged that steps students through discovery levels. 
As they build a virtual model of a problem situation, students 
figure out technical principles for assuring the model’s fidelity to 
the situation. These construction heuristics, we find, are precisely 
the conceptual foundations of algebra, such as tinkering with the 
model to assure that the variable quantity is of consistent size 
throughout the model. We articulated these principles as situated 
intermediary learning objectives (SILOs). At each interaction 
level, the student discovers a SILO, and then the technology takes 
over by automatizing that SILO, thus freeing the student for 
further discovery. We call this architecture reverse scaffolding, 
because the cultural mediator thus relieves learners from 
performing what they know to do, not from what they do not know 
to do. In a quasi-experimental evaluation study (Grades 4 & 9; 
n=40), reverse-scaffolding students outperformed direct-
scaffolding students, for whom the technical features were pre-
automatized. We speculate on the architecture’s generalizability. 

Categories and Subject Descriptors 
D.2.10 [Design]: Representations and Methodologies 

General Terms 
Design, Experimentation, Theory. 

Keywords 
Algebra, Learning, Pedagogy, Representation, Transparency. 

1. INTRODUCTION 
Educational design is a multifaceted practice. Apart from 
engineering and creating materials and activities, designers often 
make decisions regarding the activity flow—both the sequencing 
of tasks and assessment criteria for moving on from each task to 
the next along an optimized learning path. Determining an activity 
flow becomes imperative in technological media, wherein flow is 
encoded in procedures underlying human–computer interaction. 

This implementation process of hard-coding activity facilitation 
can, at times, reveal to the designers implicit aspects of their own 
professional practice. In particular, when designers are required to 
delineate their instructional intuitions in the form of a regimented 
task flow, they may become cognizant of their own pedagogical 
beliefs that had been only implicit to their naturalistic interactions 
with students. Articulating one’s pedagogical beliefs can prove to 
be a generative exercise, because the beliefs are thus revealed for 
scrutiny, perhaps for the first time. In turn, the designers can 
elaborate and evaluate these beliefs by instantiating them in 
additional contexts. As such, implicit pedagogical beliefs might 
emerge in the form of polished and portable design architecture. 
Such was the case of the design process reported herein. 

The pedagogical architecture discussed in this paper, reverse 
scaffolding, was developed in the context of conducting a design-
based research (DBR) project in the domain of mathematics. DBR 
projects are often motivated by a pedagogical conjecture that 
instantiates learning theory in the form of innovative artifacts 
(materials + activities). The conjecture is then evaluated by 
implementing the instructional design, collecting empirical 
records, analyzing these data, and reflecting on their implications 
for educational theory [7, 28]. The study cycle is typically iterated 
several times: from one study to the next, the investigators modify 
the research design so as both to improve the instructional 
intervention and focus on emerging phenomena of interest. DBR 
projects yield up to three types of deliverables: refined theoretical 
models of teaching and learning, new artifacts that may serve in 
instructional units, and reflexive insights onto the design process.  

This paper reports on findings from a culminating study cycle in a 
DBR project that investigated the roots of algebraic cognition. 
Prior study iterations of this project [5] suggested the relevance of 
the cognitive theory of transparency [13, 18] to our pedagogical 
approach, instructional design, and analyses. In this particular 
study cycle we developed and evaluated a discovery-based 
learning environment, in which students were to bootstrap basic 
algebra notions via building virtual models of problem situations. 

As the design process enfolded, we decided to parse the activity 
flow into an articulated sequence of several competency levels. 
Each level pertained to a particular construction heuristic—some 
proto-conceptual hands-on know-how—that we wished for 
students to figure out through tinkering with the modeling 
resources [23, 25, 33]. We had become aware that these modeling 
heuristics, which were specific for this algebra activity, in fact 
were technical embodiments of what we believe students ought to 
know about algebra. For example, students building a pictorial 
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model of a word problem took care to ensure that two line 
segments were of the same spatial extent, a construction principle 
that anticipates the meaning of two equal expressions in an 
algebraic proposition (e.g., equal expressions in 3x + 14 = 5x + 6). 

We decided to take great care that all students discover these 
construction heuristics, and so we implemented into the 
technological design several interaction functions that would steer 
the students toward each of these principles. As we explain below, 
we found ourselves creating a type of activity flow that we had 
not encountered in any other work. We conceptualize an activity 
flow as a form of scaffolding, in the sense that we were 
simplifying a complex practice for pedagogical purposes, and yet 
at the same time it was an activity flow for discovery. We were 
scaffolding discovery and, as such, we never enacted for students 
what they could not yet perform themselves, as in classical 
scaffolding (e.g., think of attaching training wheels to a bicycle or 
helping a child to dress). Rather, we would only perform for the 
students what they had already discovered, what they could 
perform themselves. We therefore decided to call this activity 
flow “reverse scaffolding.” 

This paper elaborates on the notion of reverse scaffolding and 
reports on a quasi-experimental research study that sought to 
evaluate this activity architecture. In this study, we compared the 
impact of two comparable interventions on participating students’ 
learning gains: a reverse-scaffolding activity, and another activity 
that consisted of the same materials and tasks only that the tasks 
flowed according to the normative “direct scaffolding.” We 
conceptualized both interventions as implementing some form of 
scaffolding, because in both cases the interface was designed to 
co-enact the modeling task with the student. However, in the 
direct scaffolding condition, the software enacted actions that 
participants had not yet devised or even attempted to perform. We 
hypothesized that participants in the reverse-scaffolding study 
condition would develop greater understanding of the modeling 
system (and thus eventually of algebra), as compared to 
participants in the direct-scaffolding control condition. 

The objective of this paper is to explain the rationale and 
operationalization of reverse scaffolding in our own design. We 
hope that our presentation will provide tools for other researchers 
to replicate and possibly extend and refine this activity flow both 
for algebra and perhaps beyond to other mathematics and further 
STEM concepts. 

Section 2 of this article (Theoretical Frameworks) explains the 
construct of transparency, which is key to reverse scaffolding, as 
well as how we conceptualized a design architecture by which 
students are to develop deep understanding of content via literally 
constructing interactive models of problematic situations. We 
dwell on the construct of a SILO—a situated intermediary 
learning objective—that we developed as a means of articulating 
what it is that students learn when they build models of problem 
situations. In Section 3 (Design), we present the pedagogical 
challenge of algebra. We explain how the SILOs served us in 
parsing the educational interaction into a sequence of levels, 
where each level creates opportunities for the student to render 
transparent one (of three) critical aspects of the algebraic 
conceptual system. Section 4 (Methods) then details how we 
evaluated this proposed interaction architecture by comparing  
learning gains across two experimental conditions: one group 
engaged in the reverse-scaffolding activity flow, in which they 
had to discover the SILOs, and the other group engaged in direct-
scaffolding activity flow and so did not have to discover the 
SILOs. Section 5 (Results) reports on the intervention’s main 

effect and presents brief annotated vignettes from qualitative 
micro-genetic analyses of the tutor–student interactions. Section 6 
(Conclusions) then offers a brief summary of the study, states its 
limitations, and suggests implications for research on the design 
of educational technology. 

2. THEORETICAL FRAMEWORKS 
In this section we first explain the construct of transparency. Next, 
we elaborate how we worked with this construct so as to engineer 
a constructivist design architecture for deep content learning. 

2.1 Transparency 
The theoretical construct of transparency is based on the premise 
that humans are thrust into a world that is rife with preexisting 
artifacts intrinsic to the social enactment of cultural practices. The 
theory is interested in each social agent’s understanding of how 
features of these artifacts mediate their accomplishment of 
particular practices [18]. 

When people first encounter artifacts, they must learn how to use 
them. This is true even for simple cultural–historical tangible 
objects, such as a fork, but certainly for more complex objects 
such as an abacus. These artifacts are to serve as the instruments 
mediating and extending the humans’ interaction with the 
environment’s materials, whether these materials are pragmatic 
(e.g., a fork mediates interaction with food) or epistemic (e.g., an 
abacus mediates interaction with signified quantities). But for 
artifacts to serve us as bona fide instruments, we must adjust to 
the artifacts’ interaction constraints [16, 17, 30]. Granted, we may 
become fluent users of some artifacts even without understanding 
how they mediate our intentionality, and so the artifacts will be 
effective yet remain opaque to us. However artifacts that are used 
to foster content learning should be transparent, because figuring 
out how they work—that is, exposing how their structure serves 
their function—is tantamount to understanding content (e.g., an 
abacus is better suited than a calculator for teaching the 
mathematical place-value system). Meira calls this process of 
learning-by-scrutinizing-an-artifact the subjective development of 
an artifact’s transparency [18]. 

The theory of transparency is important for education. It focuses 
designers’ choices in creating pedagogical artifacts, and 
specifically regarding which specific mathematical operations the 
artifacts should “blackbox” vs. “glassbox”—decisions that bear 
direct consequences for conceptual development.  In the case of 
creating a modeling activity, for example, careful consideration 
must be given in deciding whether and how a digital learning tool 
should automate certain aspects of the activity, respond to user 
input, and provide feedback. 

If learning is the subjective construction of artifact transparency, 
how do we design for this process? Moreover, if we implement 
this socio–cognitive approach in interactive technology, what 
pedagogical architecture might best inform our design decisions 
and organize our process? 

This paper considers the above questions through presenting the 
case study of a design project for deep learning of introductory 
algebra content. Reflecting on empirical results from a quasi-
experimental research design, we develop and evaluate a 
constructivist architecture for implementing educational activities 
based on the notion of subjective transparency. This architecture 
consists of engaging students in a sequence of activity levels, 
where each level corresponds with particular figural structure of 
the algebraic conceptual system. Importantly, students themselves 
determine these latent structural relations as their own pragmatic 
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solutions for modeling word problems they attempt to solve. That 
is, the students figure out historical technique for rendering 
problem situations into diagrammatic structures. 

We thus view algebra as a conceptual system emerging from 
modeling activity, and so our activity architecture was to ensure 
that key principles of this conceptual system are indeed deployed 
into the design in the form of discovery potentials. We 
conjectured that individual students would achieve subjective 
transparency of the conceptual system by tinkering with web-
based construction resources in attempt to achieve functional 
fidelity with a given problem situation. Thus learning algebra 
would be tantamount to developing construction know-how, that 
is, a set of situated heuristics and technical criteria for evaluating 
whether the virtual model preserves information structures 
implicit to the problem situation. 

This study, and in particular the emerging articulation of an 
activity architecture for educational technology, was initially 
motivated by intriguing communication problems that emerged 
during a collaboration between learning scientists and interaction 
designers [3]. We, the learning scientists, had been attempting to 
convert an educational activity for algebra from its earlier 
mechanical implementation into a digital environment [5]. In the 
mechanical version, a human tutor had supported the students by 
following a general protocol that informed decisions as to what to 
do and say and when and how to do so. In the computer-based 
implementation, however, much of this protocol would be 
encoded in software. To author this code, our collaborating 
interaction designers required from us to spell out aspects of our 
pedagogical content knowledge that were only implicit to our 
practice, and they needed a high-resolution proceduralization of 
our general instructional know-how. In a sense, our collaborators 
demanded that we render transparent for them our own tutorial 
tactics in the form of comprehensive structures that could then be 
deployed as the activity template, resources, and process. As a 
result, we created a new ontological entity, the set of situated 
intermediary learning objectives (SILOs) that spell out what 
students need to know about a particular content domain and how 
they develop this knowledge via the modeling activity [3].  

2.2 Rethinking Scaffolding 
Educational designers often begin a project by identifying a 
concept that is difficult to learn and teach, analyzing these 
difficulties, articulating a conjecture for improving instruction, 
and then creating tools in light of these analyses. The 
implementation of pedagogical design in the form of guided 
learning activities has been called “scaffolding.” More broadly, 
scaffolding can be conceptualized as the asymmetrical social co-
enactment of natural actions or cultural practice, wherein a more 
able agent implements, performs, or specifies, for a novice, 
elements of a challenging activity. 

Since its early theorization [33], the notion and methodology of 
scaffolding has become widely incorporated into all aspects of 
educational practice. Scaffolding is pervasively cited to motivate 
the design of informative and functional features of educational 
environments. These features distribute the enactment of 
processes as actions performed by the child in coordination with 
the interactive media. These media complement, emulate, and 
possibly enhance the variety of customized supports that human 
agents would provide in real time as they work with a child [18].  

The didactical metaphor of scaffolding is now so ubiquitous in the 
rhetoric of education researchers and practitioners, that its 
meaning has become diffuse, its theoretical rationale 

unquestioned, and its pedagogical operationalization vague [24]. 
For example, Reiser describes how computer interfaces scaffold 
both the user’s engagement in an activity (“structuring”) and what 
the user thinks about the content (“problematizing”). With regards 
to structure, Reiser suggests, “If reasoning is difficult due to 
complexity or the open-ended nature of the task, then one way to 
help learners is to use the tool to reduce complexity and choice by 
providing additional structure to the task” [27, p. 283]. With 
regards to problematizing, he further suggests, “Rather than 
simplifying the task, the software leads students to encounter and 
grapple with important ideas or processes” [27, p. 287].  
As we have discussed earlier, scaffolding originates from a socio-
cultural theoretical perspective wherein learning is characterized 
as a process of co-production that eventually results in the 
learner’s independence. However, mathematics-education 
researchers indicate that independent production per se may not 
always indicate or result in understanding [11, 21]. One might 
think of a student enacting a rote algorithmic procedure for 
dividing one fraction by another (or as the frivolous doggerel 
goes: “Ours is not to reason why—Just divide and multiply”). 
Some researchers suggest a constructivist approach, wherein 
meaningful learning is the process of subjectively reinventing 
cognitive structures for effectively enacting cultural practice [31]: 
“the constructivist model recognizes the benefits of students 
participating in tasks that enable the active construction of their 
own knowledge domain” [11, p. 28]. 

As such, pedagogical views inspired by constructivist philosophy 
support the argument for each child developing subjective 
transparency of the artifacts they use for performing their 
instructional tasks. At the same time, scaffolding is heralded by 
leading education scholars as a necessary pedagogical practice. 
We wondered, however, whether the practice of scaffolding—and 
in particular simplifying or co-enacting a task for the child—
might rob that child of the critical opportunity to develop 
subjective transparency. When a child learns by imitation, we 
worried, she is liable to miss out on critical opportunities to 
reinvent those very operations and structures she was relieved of. 
If so, what role, if any, could the notion of scaffolding play in a 
conceptualization of discovery-oriented learning processes?   

 
Figure 1. Fade out vs. fade in: In direct scaffolding, the 

technological environment enacts for learners what they do 
not know to do. In reverse scaffolding, the technology enacts 

what they do know to do. 
We thus faced a dilemma between two apparently conflicting 
pedagogical principles, fostering subjective transparency and 
proffering scaffolding. Our resolution of this dilemma was in the 
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way of modifying the classical notion of scaffolding. We coined 
the phrase reverse scaffolding. Traditional scaffolding captures 
the pedagogical essence of interactions designed to assist learners 
by enacting for them what they do not yet know to do. Reverse-
scaffolding, on the other hand, captures the pedagogical essence 
of interactions designed to assist learners by enacting for them 
what they know to do (see Figure 1). We hypothesized that 
individual students would construct subjective transparency of 
mathematical concepts by constructing mathematical models 
leading to those concepts. Our pedagogical rationale differs from 
traditional conceptualizations of scaffolding, by which training 
wheels are progressively faded. Instead, we have students reinvent 
the wheel. Or, if you will, our scaffolds are faded in rather than 
out. And our tasks are designed accordingly to make this happen. 

We are thus exploring a pedagogical architecture, reverse 
scaffolding, by which to foster students’ subjective development 
of transparency for artifacts encapsulating mathematical 
knowledge. Algebra is our case study—our content context—for 
evaluating this general design rationale. In particular, we treat the 
case of Giant Steps for Algebra (GS4A), an experimental 
computer-based environment designed to foster student 
conceptual construction of rudimentary algebra concepts via 
hands-on construction of virtual models. 

3. THE DESIGN 
3.1 The Design Problem 
Algebra has been described as a praxis cogitans [26]—a particular 
epistemic orientation toward situations. When we solve algebraic 
problem situations, we attend selectively to particular types of 
properties in the situation: the magnitudes of objects as well as 
quantitative relations among them, such as their numerosity, size, 
distance, or velocity. Algebraic solution methods are most 
powerful when the latent system of logical–quantitative relations 
inherent to a situation is modeled, that is, first converted into a 
diagrammatic structure and then perhaps further encoded as a set 
of propositions in the symbolic register. These symbolic 
propositions can be manipulated systematically—solving for x—
toward determining new information about the situation [9, 20]. 

Algebra has been tagged as the “gatekeeper” high-school 
mathematics course, because students’ failure to master algebra 
impedes their access to higher education [19]. Despite consistent 
attempts at reforming algebra curriculum and instruction, many 
students continue to struggle and fail [22]. Our choice of algebra 
as a case study for evaluating the pedagogical architecture of 
reverse scaffolding thus stands to inform curriculum and 
potentially to contribute toward addressing this gatekeeper barrier. 

3.2 Giant Steps for Algebra (GS4A) 
The GS4A project seeks to investigate the potential of a new 
pedagogical approach to constructing algebraic transparency. 
Consider the algebraic proposition “3x + 14 = 5x + 6.” The 
classical balance-scale metaphor for algebraic equations presents 
the proposition as the weighing of two expressions against each 
other (see Figure 2). Whereas the balance-scale metaphor supports 
the rationale of algebraic algorithms—adding (or subtracting) 
equivalent quantities on both sides of the equation so as to 
maintain balance—this structure may not directly model a variety 
of algebra problems and thus is not grounded intuitively in the 
situated context. GS4A draws instead on Dickinson and Eade [8], 
who proposed the double-number-line algebra model (Figure 3). 

The number-line visualization of algebraic equivalence appears to 
facilitate an offloading of source information onto the diagram’s 

inherent figural constraints. In this model, we can arrive at the 
solution, x = 4, by a sequence of visual deductions. 

 
Figure 2. “3x + 14 = 5x + 6” on a balance scale 

 

 
Figure 3. Number-line instantiation of “3x + 14 = 5x + 6” 

We conjectured that the number-line model therefore bears greater 
potential, as compared to the balance-scale model, for students to 
develop subjective transparency of algebra situations. In 
particular, the spatial features of the number-line model render 
highly salient the logical relations between variable and integers, 
both within- and between expressions. 

 
Figure 4. Model of a GS4A story. On both Day 1 and Day 2 

the giant travels from the flag to the destination on the right. 
Red loops represent giant steps, green loops represent meters. 
Day 1 is marked above the line, Day 2 is marked below. This 

story corresponds with the proposition 3x + 2 = 4x – 1. 
We used the number-line model in designing our learning activity. 
GS4A is a situation-based model [32]. Per the embodied-design 
framework [1, 2] GS4A seeks to engage and leverage students’ 
tacit knowledge about simple ambulatory motion and spatial 
relations. Figure 4 presents an excerpt from a screenshot showing 
a student’s solution to the following problem:  

“A giant wanted to hide treasure. She walked 3 steps and 
then another 2 meters and buried the treasure. The next day, 
she wanted to bury more treasure in exactly the same place, 
but she was not sure where that was. She began from the 
same spot. She walked 4 steps and then, feeling she’d gone 
too far, walked back 1 meter. Yes! She found the treasure!” 

Our pilot work used a range of mechanical devices in a variety of 
concrete media [5]. Qualitative analyses of student behaviors and 
tutor–student interactions suggested a relation between modeling, 
that is, building a structure that captures relevant properties of a 
problem situation, and conceptual learning. As students tinkered 
with the media to build models of the giant stories, they were 
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implicitly determining a set of rules that we named SILOs 
(situated intermediary learning objectives). Yet these SILOs 
became evident in our analyses only as we turned to redeploy 
GS4A in a scalable technological format. Therein, the SILOs 
proved instrumental in formulating a blueprint for the activity 
architecture. In the technological version of GS4A, students 
transition from each interaction phase to the next when their 
electronic actions demonstrating mastery over one of the SILOs. 
The idea is thus to step learners through an activity while enabling 
them to build subjective transparency of their emerging model. 

Borrowing the notion of “levels” from popular computer games—
the gradual rewarding of manifest competency with increased 
power that is linked to increased skill—in GS4A we level 
transparency (see Table 1, two pages down, for the specific set of 
SILOs in relation to the interaction features). At each new level, 
the technology offloads the SILO from the user—it automatically 
generates and maintains the specific technical details and 
functional relations that the user had just discovered. We 
hypothesized that students participating in this activity would 
experience unique learning opportunities. First, they would 
develop subjective transparency of the content via constructing 
models of the situation. Second, at the discovery of each SILO 
they would be relieved of the tedium of painstakingly adjusting 
features on the screen and would thus have more resources for 
further problem solving. The Methods section, below, explains 
how we sought to isolate and measure these putative effects of 
reverse-scaffolding design.  

We are not aware of similar discovery-based automated learning 
environments for algebra. The MiGen project [21] is our closest 
cousin, as it, too, is a microworld for discovering and generalizing 
proto-algebraic structures and processes. MiGen includes 
automated supports and constraints that steer students to formulate 
situated abstractions via testing their fledgling conjectures vis-à-
vis the interface’s output. The authors of MiGen view 
mathematical concepts as emerging from children’s purposeful 
construction of utility for available interactive features of 
designed artifacts. The SILOs framework differs from that of 
situated abstractions in terms of grain size, ontological and 
epistemological foci, and pedagogical underpinnings. In 
particular, SILOs articulate a set of initially unavailable 
interaction constraints that the learner determines, implicates, and 
wills as potentially conducive to more effective problem solving 
with a given artifact; in response, each of these willed constraints 
is then materialized into the artifact by the instructor who enables 
into functionality a pre-programmed “hidden” constraint. SILOs 
are thus functional concretizations of the user’s wish list into 
working technological features of an interactive device. Whereas 
situated abstractions sprout from examining what is, SILOs sprout 
from willing what isn’t. 

4. METHODS 
4.1 Participants 
Forty Grade 4 and 9 students (18 male, 21 female) from an 
independent elementary and public high school voluntarily 
participated individually in task-based semi-structured clinical 
interviews [6, 12]. 

4.2 Experimental Design 
The rationale of the experimental design was to measure and then 
compare learning under two conditions: a study-group worked 
with the leveling-transparency functionality (reverse-scaffolding 
group, RS) and the control-group worked without it (direct-

scaffolding group, DS). In the DS group, users would not need to 
“earn” the automatic functionalities—they would receive ab initio 
a fully-fledged technological application. We hypothesized that 
the DS group students would thus experience reduced opportunity 
to develop subjective transparency of the conceptual system. See 
Table 1 for the distribution of participants by condition. 

Table 1. Participant Distribution by Condition 

 Condition 

Grade RS DS 

4th  11 9 

9th  10 10 

Total 21 19 

  

Upon completing the activity, all participants responded to two 
series of post-activity assessment problems. These problems were 
designed to evaluate participants’ subjective transparency of pre-
formal algebra concepts, as operationalized in the three SILOs. 
We used two sets of problems: (a) New-Context problems, in 
which we measured for the application of learned skills (transfer); 
and (b) In-Context problems that targeted the three SILOs directly 
within the familiar GS4A setting. The New-Context problems 
were narrative problems that had a similar structure to the Giant 
Steps problems yet dealt with different situations (the age of a 
turtle and the height of two buildings). The In-Context problems 
tasked participants with correcting hypothetical students’ models 
that violated one or more of the SILOs.  

The interviews took place in a quiet room on the school sites and 
were all videotaped for subsequent analysis. The interviewer (the 
first author) took field notes following each session and consulted 
on a daily basis with the design-research team so as to optimize 
the quality of collected data. 

4.3 Analysis 
The entire corpus of data was transcribed. Using micro-genetic 
analysis techniques [29], we developed a coding system for 
capturing the participants’ development of subjective transparency 
of the algebra conceptual system. The coding structure was 
designed to identify and characterize moments when the 
participants articulated understanding of each SILO, that is, each 
structural feature of the model.  

The post-activity assessment problems served as the primary 
source for empirical analysis. We scored participants’ responses 
based on evidence that they achieved each SILO. After one 
analyst had coded all the post-activity assessment problems, a 
second analyst independently scored 21% of this data corpus. 
Results from an inter-rater reliability test were Kappa = 0.822 (p 
<0.001), 95% CI (0.646, 0.998), almost perfect agreement. 

For the purposes of this paper, we selected several annotated 
transcriptions. These vignettes include episodes both from the 
study and control group. To facilitate juxtaposition between 
students in the two groups, we selected events that all revolve 
around students’ actions related to the same SILO. Namely, our 
analyses focused on students’ attempts to spatially align the two 
journeys such that the relationship between the variable (giant 
steps) and integer (meters) could be identified and deciphered. In 
all cases, we also attempted to determine whether the tools 
obfuscated or illuminated the SILO. 
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Table 2. Leveling Transparency: Matched SILOs and Levels in the Giant Steps for Algebra Technological Design 

SILO Level 
System Constraints, User Activity, and 

Behavior Criterion Interface 
1. Consistent 
Measures 

  1. Free Form System offers no support in coordinating units or 
expressions. 

 

  
Activity 

 
User builds all parts of the model manually. 

 

 Criterion User expresses frustration in equalizing units.  

2. Equivalent 
Expressions 

  2. Fixed Meters System generates meter units in predetermined 
size and maintains uniform size automatically. 

 

  
Activity 

 
User builds variables manually. 

 

 Criterion User expresses frustration with managing uniform 
variable units the lengths of Days 1 & 2. 

 

3. Shared Frame of 
Reference 

  3. Stretchy System monitors for manual adjustment to the 
size of any of the variable units and accordingly 
adjusts the size of all variable units. 

 

  
Activity 

 
User adjusts the variable size to equalize the two 
propositions 

 

 

 

 Criterion User reads off the value of a variable unit in terms 
of the number of known units (meters) it 
subtends, e.g., one giant step is 2 meters long. 
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5. RESULTS  
5.1 Main Effect 
We expected to receive a positive difference that would indicate 
greater mean learning for the experimental condition as compared 
to the control condition. We therefore used a one-tailed 
independent-samples t-test to examine for differences between the 
mean scores of the two groups. Results from the New-Context 
tasks revealed that the RS experimental group (M=5.17, 
SD=2.34) scored significantly higher than the DS control group 
(M=4.10, SD=2.76); t (38)=1.98; p=0.02. Results from the In-
Context tasks revealed that the RS experimental group (M=5.88, 
SD=2.10) scored significantly higher as compared to the DS 
group (M=4.60, SD=1.90); t (38) = 2.00; p = 0.02. Combining 
both results from these post-activity assessment problems 
revealed that the RS group (M=11.59, SD=3.57) scored 
significantly higher than the DS group (M=8.71, SD=3.81); t (38) 
= 2.46; p < 0.01. 

5.2 Qualitative Analysis 
We now present a selection of annotated vignettes from our 
participating students’ guided interactions with the technological 
artifact. As we argue, based on these paradigmatic data excerpts, 
the two instructional conditions appear to have had differential 
effect on our participants’ learning. These differences appear to be 
more nuanced than could have been measured by the post-
intervention assessments alone. Building on this apparent finding 
of the study-group participants’ advantage over the control-group 
participants, we will then use this finding as evidence supporting 
our claim that the difference lies in the different interventions and 
that, therefore, there is cognitive advantage in developing 
subjective transparency through leveled discovery. In turn, this 
apparent validation of the conjecture will lend support to the 
pedagogical architecture of reverse scaffolding.  

The vignettes in this section are organized as matched pairs, with 
compatible reverse-scaffolding (RS) and direct-scaffolding (DS) 
study participants juxtaposed so as to bring out critical 
differences. We begin by featuring vignettes of two 4th-grade 
participants, an RS participant and a DS participant, both rated by 
their teacher as having “high” mathematical abilities.  

Susan (all names are pseudonyms) is working in the RS condition 
(study group). She is at Level #1, working on an informal 
narrative corresponding to the formal proposition “4x = 3x + 2.” 
She has completed the Day 2 travel diagram (see in Figure 5 the 
four red loops above the horizontal line) and is now working on 
the Day 2 travel diagram below the line. 

Res.: Ok. So she goes… 
Susan: 3 giant steps and….. 
Res.: …and then.... 
Susan: 2 meters. (Susan switches an interface feature 

to “meters” and draws below the line 2 
equivalent meters that subtend the 4th giant 
step immediately above the line.)  

Res.:  So she goes 2 meters and then she finds the 
right spot. 

Susan: Yeah  
Res.: So in your drawing did she find the right spot?  
Susan: Hmmm well yeah.  

 
Figure 5. Susan’s construction for a Giant Steps story 
corresponding to the algebra proposition 4x = 3x + 2 

Immediately, Susan has identified that the end point for both days 
is in the same screen location (see the treasure flag in Figure 5, on 
the right) and that, consequently, the 2 meters on Day 2 will 
subtend the same distance as the 4th giant step on Day 1. Despite 
some imprecision in her modeling execution, for example the 
meters are not of precisely the same screen size, Susan has 
constructed the transparency of equivalent expressions (SILO 2).  

We now turn to Karrie, a participant in the DS condition (control 
group), who is working on the same item (see Figure 6).  

Karrie: It says she walks 2 steps further ahead and 
finds the treasure. But that doesn't make sense 
because it is more back than the other 
treasure. (Karrie has drawn a model in which 
the giant steps are too large, so that the 
respective ends of Day 1 and Day 2 are not 
co-located.)  

 
Figure 6. Karrie’s construction for a Giant Steps story 
corresponding to the algebra proposition 4x = 3x + 2 

Concerned by this misalignment between the end points of Days 1 
and 2, Karrie suggests inserting additional meters. The interviewer 
responds by stating that doing so would violate the information in 
the story. The conversation ensues as follows. 

Karrie: I can change the size of the giant steps.  

Pursuing on her new idea, Karrie attempts to stretch the Day 2 
travel diagram toward the right so that it reach the treasure flag. 
Specifically, she stretches the giant steps in Day 2 (the red loops 
below the blue line, see Figure 6). Recall that in the direct-
scaffolding condition the variable distances (all the red loops) are 
automatically interlinked, both within- and between days. 
Consequently, the variables in both Day 2 and Day 1 all stretched 
uniformly, and the two misaligned ends only became farther 
apart! Karrie then attempted the same maneuver by decreasing the 
step size in Day 1, but she stopped before the two ends met. 

Karrie: It moves the whole thing? 

Karrie was surprised to witness the automated-scaling feature that 
simultaneously adjusts corresponding variables in and across both 
days uniformly. Karrie had had meant to equalize the linear 
extents of the two days by first adjusting Day 2 and only then Day 
1. Thus whereas Karrie was demonstrating SILO 3, equivalent 
expressions, she was doing so with disregard to SILO 1, 
consistent measures. Moreover, Karrie did not appear to 
appreciate the implication of uniform variable size for the fidelity 
of her story model. To Karrie, this feature is not transparent. 
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We now turn to our second comparison, two 9th-grade 
participants, both rated by their teacher as having “medium” 
mathematical abilities. Taylor is working in the RS condition. He 
is at Level #2, working on the narrative corresponding to the 
formal proposition “2 + 2x + 3 = x + 1 + 2x + 1.” He has just 
begun reading the problem. 

 
Figure 7. Taylor’s completed model with the components 

reorganized for simplicity 

Taylor: Ok. Two meters, (begins by drawing 5 meters, 
see Figure 7). 

Res:  Wait, what did you do? 
Taylor: I put all the meters first. ‘Cause, like, they’re 

all going to go to the same place. (Taylor 
performs a sweeping hand gesture from left, 
the start, to right, the treasure location; see 
Figure 8). It doesn’t really matter, the order. 

 

Figure 8. Taylor moves his hand from the start (left side of the 
screen) to the treasure (right side of the screen). 

Taylor’s insight captures an auxiliary objective for the design of 
this particular problem item. We intentionally created this item so 
as to foster an opportunity for participants to combine units 
(meters) and variables (giant steps). And yet the participants 
would need to be motivated to discover the utility of such 
combining. By stating that the order of distances traversed (the 
situated addends) does not change the final destination (the sum) 
Taylor is taking advantage of the commutative property of 
number, as instantiated in the form of a string of concatenated 
segments, to create a model that better utilizes the number-line 
solution form. Taylor clearly demonstrates that he has a flexible 
understanding of the model he is creating and has achieved all of 
the SILOs. In fact, Taylor is thoughtful in discussing how he can 
utilize this know-how so as to improve and interpret his model. 
His flexibility is reflected in his scores on the New-Context post-
intervention assessment, where he received a score of 6 out of 8. 

We now turn to Irene, a DS participant working on the same 
problem as Taylor. Recall that the DS condition automatically 
generates fixed meters and automatically rescales all of the giant 
steps for the participant (consult Table 1 for details).  

Irene has just completed her model of the story narrative and 
realizes that the ends are not aligned (see Figure 9a). 

Irene: Umm, So you need to make it bigger (she 
stretches the model so that the ends meet, see 
Figure 9b). There. 

Res: Ok, so now they meet? 
Irene: And I think each step is worth, .... not worth 

exactly (Irene appears to be groping for the 
word “equivalent”) ...3 meters? 

Res: hmmm 
Irene: So…. 
Res: What makes you say that? 
Irene: Like first on day 1 (switches the interface so 

that Day 1 is highlighted) it is 2 meters 
(scrolls over the first giant step on Day 2, 
which corresponds to 2 meters and a gap on 
Day 1). And I think if you had 1 more meter it 
would be 3 (scrolls over the gap, see Figure 
9b – After stretching). 

  
a. Before stretching b. After stretching 

Figure 9. Irene’s model before and after stretching 

Irene has achieved SILO 3, “shared frame of reference,” as 
observed through her actions to align the ends of her Day 1 and 
Day 2 models in an attempt to determine how many meters make 
up one giant step. However, when it comes to determining a 
solution, Irene warrants her claims based on available visual 
information rather than the narrative information. She states, “I 
think if you had 1 more meter,” yet she does not cross-check with 
the situation narrative. Furthermore, Irene’s solution strategies do 
not exemplify the same level of sophistication and flexibility as 
her classmate Taylor. The results of this lack of flexibility are 
reflected in her scores on the New-Context post-activity question 
where she received a total score of only 3 out of 8.  

Whereas there are moments in Irene’s intervention that indicate 
her thoughtfulness, this thoughtfulness was not apparent later in 
the New-Context post-intervention assessment. The direct-
scaffolding task-flow architecture of the intervention had enabled 
Irene to develop an effective yet inflexible and non-transferable 
modeling routine: (a) model each of the two Day narratives, 
respectively above and below the line; (b) stretch or shrink one or 
both day diagrams until the ends meet; and (c) calculate the meter 
value of a step. Importantly, the uniform stretching/shrinking of 
the variable quantity was a given automatic feature of the 
interaction. Irene never had to discover, challenge, or monitor this 
feature, and so this feature remained opaque—the feature did not 
appear to be grounded in any insight on the modeling system as 
relating to the narrative situation. 

Note that we are not critiquing Irene. Her reasoning was logical, 
rational, and consistent. Rather, we underscore that Irene’s 
reasoning was bound the particular contexts whence it developed. 

Irene’s hands-on problem-solving algorithm appears markedly 
different from the varied strategies Taylor employed. In the 
reverse-scaffolding task-flow architecture (gradual 
automatization) the user must modify the solution algorithm with 
the introduction of each new level. Doing so, we believe, offers 
the user opportunities to devise new and adaptive forms of 
manipulating the model’s structural features as well as 
opportunities to interpret the emerging structural systems from 
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multiple perspectives. Thus the user develops subjective 
transparency of the modeling system by exercising flexible 
visualization and manipulation. In particular, the user devises new 
operatory schemes that become articulated as the SILOs. 

Consider the case of Taylor. Recall that the task-flow change from 
Level 2 to Level 3 introduces the automatization of uniform Giant 
Steps. The moment this feature was enabled, Taylor recognized its 
utility, exclaiming, “Oh, I need that!” He immediately knew how 
this new control would function, understanding that it would 
generate and maintain consistent yet automatically scalable giant 
steps (SILO 1). In turn, the transparency of this Level 3 utility 
enabled Taylor to instantiate SILO 3, the shared frame of 
reference between variable and known quantities. 

Now compare Taylor’s case to that of Irene. During the post-
intervention In-Context assessment, Irene is asked to interpret and 
possibly fix an incorrect model created by a hypothetical 
participant (see Figure 10).  

 
Figure 10. In-Context Question #2 

Irene correctly identifies that the giant steps and the meters in this 
item are each modeled as non-uniform. In response, she wishes to 
enact her three-step solution strategy—model, stretch/shrink, 
calculate—so as to amend the apparent irregularity. Irene makes 
the following suggestions: (a) Pointing to the end nodes on the 
right that are not perfectly aligned, she says, “The giant steps on 
the bottom should be moved (toward the left) so that the ends (on 
the right) meet”; (b) “They should put big meters in big giant 
steps, and small meters in small giant steps…”; and finally (c) 
“…so that a giant step is 3 meters.” Irene’s suggestions for fixing 
the model intimate that she does not view the interaction 
affordances as instantiating critical features of an emerging 
conceptual system. At no point in her proposed solution does she 
directly address the non-uniform size of the giant steps. Her 
second solution step violates SILO 1, consistent meters. Her last 
solution step, while adhering to SILO 3, shared frame of 
reference, is incorrect. 

Unlike Taylor, who expressly predicted the interface’s 
affordances for the modeling the problem situation, Irene never 
wondered about the interface’s action capabilities that were 
present in the construction of the model in Figure 10, namely that 
the interaction was manual. Irene is process oriented—she has 
developed an effective protocol for solving a particular class of 
problems under particular interaction conditions, and yet she 
never had to will those interactions and then acknowledge their 
arrival. She cannot appreciate how the model maintains or violates 
the SILOs, because the model’s functions are opaque to her. 

Based on these as well as other matching comparisons of 
annotated vignettes across the entire data corpus, we are inclined 
to assert that GS4A indeed fosters algebraic transparency. We 
further assert that the leveling-transparency activity-flow 
architecture was directly instrumental in mediating students’ 
insights into the emerging algebraic system. 

Furthermore, the generic notion of “scaffolding”—that is, that 
educators should facilitate learning via co-enacting for learners 
aspects of complex practice—does not foster algebra transparency 
too effectively. We therefore propose that an alternative 
instructional methodology should be considered. The leveling-
transparency architecture offers just this: it can be conceptualized 
as reverse scaffolding—the technological system co-constructs the 
model with the student only after the student understands the 
necessity and functionality of each specific property of the model. 

6. CONCLUSION 
We reported on a design-based research project, in which we 
developed and evaluated a discovery-oriented activity for early 
algebra. The activity architecture is designed for users to 
gradually discover a set of situated features of the algebraic 
conceptual system. These latent features emerge and are 
articulated as “how-to” construction heuristics in the course of 
modeling assigned problem situations and enacting these models 
discursively. The activity is parsed into a sequence of levels. At 
each level users tinker with, negotiate, and reify what turn out to 
be critical features of the target content. The interface then 
automates these features. Thus an activity architecture designed 
for leveling discovery of modeling techniques supports the user’s 
subjective construction of transparency for the conceptual system.  

Emerging from the project is a new pedagogical approach called 
reverse scaffolding. In this approach, mathematics students 
discover properties of conceptual systems, such as algebra, by 
building virtual models of problem stories. As they do so, students 
figure out practical principles for building good models, that is, 
models that bear fidelity to the stories. These principles, as it turns 
out, are the situated embodiments of the conceptual system. When 
a student’s actions demonstrate the discovery of one of these 
principles, the computer “takes over” by relieving the student 
from executing and monitoring that principle. Reverse 
scaffolding, much like traditional (“direct”) scaffolding, captures 
teacher/student co-construction of content-relevant conceptual 
coordinations. Yet it is reversed, in that the interface scaffolds 
what students know to do rather than what they do not know to do. 

Our results lend support to the thesis that the reverse-scaffolding 
is more effective in fostering conceptual understanding as 
compared to the traditional approach, direct scaffolding. In accord 
with our design conjecture, we demonstrated a statistically 
significant main effect, by which our study group outperformed 
the control group (total n=40) on measures of conceptual 
understanding. Results from qualitative analyses further suggest 
that the pedagogical design architecture of reverse scaffolding, 
implemented as a discovery-based leveled task flow, enables 
students to develop subjective transparency of the target content.  

Students need not be spoon-fed ready-made solution strategies for 
mathematical problems they first encounter [4]. Indeed, struggle 
and inevitable failure in the process of inventing solution 
strategies are conceptually beneficial [14, 15]. Given appropriate 
design, students can discover key aspects of conceptual systems. 

Reverse scaffolding should be seriously considered as 
pedagogical architecture for the design of learning environments, 
whether for algebra or other mathematical content and perhaps 
beyond for other STEM domains. Future DBR studies should thus 
focus on a variety of learning activities both within and outside of 
mathematics. Enduring design challenges to be addressed reside 
in automatizing the tutor’s entire range of responses. If 
technological designs such as Giant Steps for Algebra are to go to 
scale, available for any child with access to a computer and 
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internet, then projects such as this would benefit from 
collaborating with computer scientists with expertise in artificial 
intelligence, embedded assessment, and learning analytics. 
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