
 1

SITUATING PROGRAMMING ABSTRACTIONS IN A
CONSTRUCTIONIST VIDEO GAME

David Weintrop and Uri Wilensky

Abstract
Research on the effectiveness of introductory programming environments often relies on post-test
measures and attitudinal surveys to support its claims; but such instruments lack the ability to identify
any explanatory mechanisms that can account for the results. This paper reports on a study designed to
address this issue. Using Noss & Hoyles’ constructs of webbing and situated abstractions, we analyze
programming novices playing a program-to-play constructionist video game to identify how features of
introductory programming languages, the environments in which they are situated, and the challenges
learners work to accomplish, collectively affect novices’ emerging understanding of programming
concepts. Our analysis shows that novices develop the ability to use programming concepts by building
on the suite of resources provided as they interact with the computational context of the learning
environment. In taking this approach, we contribute to computer science education design literature by
advancing our understanding of the relationship between rich, complex introductory programming
environments and the learning experiences they promote.

Keywords programming, computer science, constructionist video games, webbing, situated abstractions

1. Introduction

With the ever-growing landscape of introductory programming environments, an important, yet
unanswered (or at least not sufficiently answered), question is that of the relationship between a
programming tool and the understandings it promotes. Does a student writing a program in Logo
develop the same understanding of conditional logic as a student working in Scratch? Does learning to
program with Alice, Snap!, or starting off with “Hello World” in Java all result in the same
understanding of the programming concepts used? To a veteran programmer, the answer might be yes –
a conditional statement is a conditional statement is a conditional statement; syntax might differ, but the
underlying concept is constant. Studies investigating the affordances of different introductory
programming tools often rely on direct comparisons between two environments; do students perform
better on a post-test after they use environment A or environment B? (see for example [1]). While much
can be learned with this approach, it does not yield insight into the questions we pose above. By relying
on post-test measures, we learn the outcome, but are unable to identify any explanatory mechanisms
that can account for the differences. Answering these questions requires a different methodology and a
different set of theoretical constructs. In this paper we present a study designed to address this issue,
focusing on one specific type of introductory programming environment: program-to-play
constructions video games. The goal of this study is to answer two, interrelated research questions: (1)
How are programming concepts encountered and used while playing a program-to-play constructionist
video game? and (2) How do features of the game and the gameplay context contribute to a player’s
developing understanding of these programming concepts? Using Noss & Hoyles’ [2] constructs of
webbing and situated abstraction, we analyze programming novices playing RoboBuilder [3], a
program-to-play constructionist video game of our own design, to answer these questions.

 2

2. Literature Review

The idea that young learners should be taught to program, and that doing so has far reaching benefits,
originated with the Logo Project [4], [5]. Papert found that “when a child learns to program, the process
of learning is transformed. It becomes more active and self-directed…The new knowledge is a source
of power and is experienced as such from the moment it begins to form in the child’s mind” [6, p. 21].
This view was part of a larger vision of the transformative potential of computers to fundamentally
changing how learning takes place. diSessa [7] argues that it is not just the act of programming, but also
the medium, that promotes this new form of thinking: “Programs are not just analytic and a basis for
reasoning. They are also synthetic. They can be run…Programming turns analysis into experience and
allows a connection between analytic forms and their experiential implications” [7, p. 34].

Studying the process of learning to program begins with a programming language. For Papert it was
Logo, for diSessa it was Boxer. Logo, Boxer, and other early languages designed for novices, such as
Smalltalk [8], seeded an ever-growing tree of low-threshold, high-ceiling languages. New languages
and environments brought with them new ideas and innovations for making programming accessible
and empowering for younger learners. NetLogo [9] introduces learners to emergent phenomena through
programming large numbers of agents, making it possible for novice programmers to explore the
dynamics of complex systems. Scratch [10], using a graphical programming interface, allows users to
construct programs with only a mouse and provides an online forum for learners to explore, share, and
remix programs written by others. Programming tools like Tern [11] use physical manipulatives to
make writing programs a hands-on activity. The computer science education community has also
created and studied many introductory programming tools (for a review, see [12]). Across these and
other introductory programming environments, a large body of literature has emerged chronicling the
thinking and learning that takes place as they are used. Papert’s early work with Logo focused on types
of mathematical thinking that develop in young learners through working in computational settings,
arguing for promoting heuristic concepts like problem simplification and debugging over mathematical
formalisms and terminology [13]. This work launched multiple avenues of study, including the
development of mathematical meaning with Logo and other computational microworlds [2], [14], as
well as the growth of programming practices like debugging and other general problem solving
strategies [15]. Low-threshold programming environments have also been used to study thinking and
learning in other disciplines beyond math and computer science [16]–[18]. It is also important to
mention the effects constructionist programming environments have had on shifting attitudes and
perception of programming among girls and other underrepresented populations [19], [20].

3. Constructionist, Program-to-Play Video Games

To study the relationship between the understanding that develops in learners and the programming
language, environment, and activity, we use a program-to-play, constructionist video game [21].
Constructionist video games bring central constructionist ideas (learner-directed exploration, personally
meaningful constructions, emphasis on powerful ideas) to the video game design genre. Program-to-
play video games are a specific form of constructionist video games that make the writing of programs
the central activity of gameplay [22]. We chose this type of environment as it provides a rich set of
features for learners to leverage, including a blocks-based programming interface, a domain-specific
programming language, a visual execution environment, and a familiar form of digital interaction.

 3

Collectively these features provide a productive context for analyzing how design features of the
environment affect novices’ emerging understandings of programming concepts.

RoboBuilder (Figure 1) is a program-to-play constructionist video game that challenges players to
design and implement strategies to make their on-screen robot defeat a series of progressively more
challenging opponents in one-on-one battle. To be successful, players must define instructions for their
robot to locate and fire at their opponent while avoiding incoming fire; the first robot to make its
opponent lose all of its energy wins. RoboBuilder’s interface has two distinct components: a
programming environment (right pane of Figure 1), where players define and implement their robot’s
strategy; and an animated robot battleground (left pane in Figure 1), where players watch their robot
compete. Players first interact with the programming interface to define their robot’s behaviors before
launching the battleground screen. To program their robot, players are provided with a domain-specific,
blocks-based programming language that includes basic robot actions, such as ‘turn right’ and
‘fire!’. RoboBuilder is a component-oriented microworld that gives players the ability to “build and
think in terms of objects that are close to their domain of interest” [23, p. 231]. RoboBuilder builds on
two open source projects: Robocode [24] and OpenBlocks [25].

Figure 1: RoboBuilder's two screens: the battle screen (left) and the construction space (right).

4. Methods

The data in this paper were collected in hour-long RoboBuilder sessions during which programming
novices played the game in the presence of a researcher. Sessions begin with the researcher introducing
participants to the game, which includes describing the game objective and features of the language.
The gameplay protocol follows a three-phase iterative cycle. First, participants are asked to verbally
articulate their gameplay ideas and intentions. Next, participants work in the programming interface,
constructing programs to carry out the ideas they just stated. The third phase of the protocol begins with
the launching of a battle. As their robots compete, participants are asked to describe what they see their
robot doing and whether or not it is behaving as expected. The end of the battle marks the completion
of the cycle. The next iteration begins with participants explaining the next round of modifications or
additions to their robot strategy they wish to carry out. This protocol is designed to elucidate players’
developing understanding of programming concepts over the course of the interview. Twelve subjects
were recruited to participate in this study. Older participants were recruited from a university in a large
American city. High school-aged participants were recruited through their affiliation with a community

 4

center in the same city that serves a predominantly African-American, low SES community. Table 1
provides basic information about each participant’s RoboBuilder session(s).

Name Grade Time Played # Robots Authored Highest Level
Jeff 9th grade 37:48 14 7
Benjamin 10th grade 31:15 4 2
Daniel 10th grade 44:47 8 7
Allen 11th grade 1:01:31 6 2
John 11th grade 37:27 16 2
Jane 1st year undergrad 39:32 10 1
Ruth 2nd year undergrad 47:15 7 2
Anne 3rd year undergrad 54:19 10 6
Morris 3rd year undergrad 46:03 16 7
Beth 4th year undergrad 3:47:06 46 (across 4 sessions) 7
Joseph Graduate student 45:59 9 5
Bram Graduate student 1:00:14 6 6

Table 1. Information on the twelve participants included in this study.

5. Theoretical Framework

The analytic lens we bring to this work is built on a pair of interrelated theoretical constructs. In their
analysis of mathematical meaning making in interactive computational environments, Noss & Hoyles
[2] developed the construct of webbing to capture the rich, diverse and interrelated features of
constructionist environments that provide support to the leaner. Webbing describes “a structure that
learners can draw upon and reconstruct for support – in ways that they choose as appropriate for their
struggle to construct meaning” [2, p. 108]. The construct of webbing is intended to capture the full
network of supports provided to the learner, not just a single scaffold within the environment, allowing
the designer to study the learning process as it emerges through the use of the features of the
environment in concert, as opposed to elements used in isolation. Thus, researchers can remain faithful
to the recognition that learning is not uniform across pupils, but is unique to the individual and provide
a way for researchers to capture the nuance of the learner’s activity within a rich computational context.

The second theoretical construct we use in our work provides a way move from the webbing of a
specific interaction to the general concepts and practices of the domain of interest. The construct of a
situated abstraction was developed in order to “afford a means to describe and validate an activity from
a mathematical vantage point, without necessarily mapping it onto standard mathematical discourse”
[26, p. 2]. In interacting with computational learning environments “learners web their own knowledge
and understandings by actions within the microworld, and simultaneously articulate and mesh
fragments of that knowledge – abstracting within, not away from, the situation” [14, p. 228]. Situated
abstractions give us a way to both attend to the situated nature of the activity within the webbing of the
environment, while also recognizing the ability of concepts to transcend contexts, and thus providing a
way to link in situ activity with more general, abstract forms of conceptual knowledge. In bringing this
lens to the analysis of a RoboBuilder, we can see how learners forge connections with the features of
the tool and the computational meaning they carry, and interpret and ascribe meaning to this process.

 5

6. Programming Abstractions in RoboBuilder

In this section, we present our analysis of the RoboBuilder sessions. We coded the sessions to see if and
how participants encountered and used four specific programming concepts: object state, conditional
logic, iterative logic, and flow of control. For each concept, we provide a brief example of a learner
encountering it during gameplay, then report on its frequency across the full set of participants.
Building on the constructs of webbing and situated abstraction, we link the use of these concepts back
to RoboBuilder’s interface and the gameplay activity as part of the discussion for each concept. We
coded for the use of the concepts throughout the construction process, including the planning,
construction and evaluation phases of the interview protocol. We begin this section with a vignette to
provide a sense of how components of RoboBuilder’s webbing were appropriated to situate one
learner’s emerging understanding, then continue with our analysis of the four programming concepts.

The following interaction occurred early in Beth’s interview, during her second battle against the level
one opponent whose strategy is to remain motionless until its energy drops below 50, at which point it
begins to move randomly. After seeing her opponent come to life during the first battle, Beth asks:

Beth: Do you know when this mysterious other thing is going to happen?
Interviewer: It happens at 50
Beth: It happens when it reaches 50? OK, so that robot must have something built into it when it

reaches 50. Oh! There we go, so that's what the, that's what the other boxes are for, so like if
you reach a certain health level you can change the actions, oh, ok. I didn't understand that.

In this exchange, we can see the invocation of two programming concepts to explain in-game behavior,
and start to get a sense for how the webbing of the game helped situate their use. The two programming
concepts Beth employs in this example are object state and conditional logic. Through her statement:
“If you reach a certain health level” we can see both of the two concepts invoked. First is the
recognition that robots have a health level, which is a value that serves to describe a characteristic of
the robot (i.e. defines its state). Second, in starting her statement with “if” and then describing the
consequences for a given condition being reached (attaining a certain health level), she uses conditional
logic to explain how to create the observed behavior. Interestingly, Beth’s explanation of how to use
the programming blocks to create this behavior matches the actual program controlling her opponent.

A number of features of RoboBuilder contributed to Beth, a programming novice, being able to
correctly employ these two programming concepts. First, the displaying of the available blocks in the
programming interface provided a key resource in her using these programming constructs; she even
refers to the blocks (what she refers to as “boxes”) in her explanation. Second, Beth is describing the
behavior of her opponent, not her own robot. Her being able to draw on opponent behaviors as a way to
bootstrap her own understanding is a design strategy we have analyzed elsewhere [27] and constitutes
another component of the webbing in which the concepts of conditional logic and object state were
situated. A third critical aspect of the webbing Beth uses in this episode is the visual enactment of the
battle. While Beth did have all of the blocks explained to her during her introduction to the game, from
this quote, it is clear that the first, out-of-context, explanation of the blocks was not sufficient for her to
understand their meaning. Her saying “so that's what the other boxes are for” followed by “I didn’t
understand that” highlights the difference between her being told what blocks do versus seeing their

 6

behaviors enacted during gameplay. This quote suggests that while she initially did not understand the
utility of some of the blocks, through seeing them situated within the webbing of the game, their
meaning emerged. Put another way, through the network of resources provided by RoboBuilder (its
webbing), Beth was able to use the concepts of state and conditional logic to interpret game outcomes
(i.e. situate these two programming abstractions).

6.1. Programming Concept: Object State

Object state is the knowledge that computational entities contain data in the form of property-value
pairs that define the object at any given moment in time. In RoboBuilder, there are two types of object
state we coded for: internal robot state, which pertains to information about the properties of the robot,
such as its energy, heading, or speed, and battle-state, which captures the state of a robot during battle,
such as being hit or seeing an opponent. In the vignette above, we saw Beth encounter object state as
she thought through how her opponent used its energy level, a characteristic of its internal state. A
second example of a novice attending to state can be seen early in Ruth’s RoboBuilder session. In
explaining a strategy for defeating her level one opponent she says: “In level one, the robot doesn't
move much, so if you're already facing the robot and hitting it, then there is not point in moving more.”
By saying: “you’re already facing the robot”, she invokes one form of object state, describing her robot
in terms of what direction it is facing. She continues by saying “and hitting it”, describing the second
type of object state present in RoboBuilder, that of her robot having successfully hit its opponent. Here,
Ruth draws on the visual enactment of the battle, RoboBuilder’s language, and the overarching game
objective as part of the webbing in which to situate the concept of object state.

6.2. Programming Concept: Conditional Logic

Conditional logic builds on the previous concept to allow a player to introduce differential behaviors
based on the state of the robot or the state of the game. Above, we saw Beth use conditional logic to
explain the level one opponent’s behavior. In coding for conditional logic, we looked for players
proposing different outcomes based on state or explicitly referencing or using RoboBuilder’s
conditional logic blocks. Conditional logic was also used by players when thinking through strategies,
as we can see in this quote from Allen:

Allen: While I'm shooting at the other robot, if he misses, I'm pretty sure he'll have to still shoot
because I'm pretty sure the point of the game is to hit the other robot… If [my robot] does get
hit, I guess he's probably too close to the other robot, so I might have to tell him move back… If
he has higher energy than the other robot, let's say, he's probably 50 higher, I'd probably just
tell him to get closer to the robot and just start shooting 'cause he's got energy to spare.

Here we see Allen laying out his robot’s strategy as a series of conditional statements. In some cases,
he depends on the battle-state to dictate his robot’s behavior (“if he misses…”); in other cases Allen
uses robot-state to inform his robot’s behavior (“if he has higher energy…”). For Allen, the video game
context served as an important resource for him to situate his use of conditional logic – by drawing on
the webbing of the game (the game objects, the nature of gameplay, the in-game objects themselves) -
he was able to articulate a potential robot strategy built around the concept of conditional logic.

6.3. Programming Concept: Iterative Logic

 7

Iterative logic can be used to repeat commands either a fixed number of times or until a specified
condition is met. In our analysis, this code was applied when participants referred to an iterative aspect
of the game (such as an in-game event repeating) or when either of RoboBuilder’s two iterative blocks
(while and repeat) were used or discussed. We can see how the webbing of RoboBuilder supported
the use of iterative logic and the situated nature of the in players in-the-moment understanding of it in
how Joseph resolved the problem of his robot getting stuck against the wall of the battleground. When
his robot hit a wall, he gave it the instructions: back 10 then turn right 30 then forward 50.
This caused his robot to hit the wall repeatedly, turning a little bit each time. Upon completion of the
implementation of his solution, Joseph explained: “this way [my robot will] back up and kind of
parallel park away…till he's not at the wall anymore.” Here, Joseph devised a strategy that relied on
iteratively running as many times as necessary to move his robot away from the wall. In comparing the
maneuvering of his robot to the act of parking, he includes parallels between in-game and out-of-game
events as part of the webbing he uses to build his understanding of the concept.

6.4. Programming Concept: Flow of Control

Flow of control captures the knowledge that programs are executed sequentially and serially. In
analyzing the interviews, the flow of control code was applied when players discussed the execution
order of blocks either within an event or across game events. In some cases, the concept of flow of
control was confronted directly, including instances of participants systematically testing out the order
of execution of the program by changing the order of blocks within their program then running it to see
how the behavior changed. In other cases, players encountered flow of control by trying to understand
how and when different events ran. For example, when Bram was trying to reason through his
implementation of When I see a robot, he slowed down the execution of his program, focusing
specifically on how his robot behaved after first spotting its opponent. “So when [the When I see a
Robot event] finishes, it moves up and does [the Run event].” Here we see Bram make a statement
about how flow of control moves from one event to another, relying on the ability to slow down the
speed at which his program executes to help him figure it out. Like with the other programming
concepts, the visual execution, iterative nature of gameplay, and the ability to control the speed of
program execution all contributed to the webbing in which he developed his understanding of the
concept of flow of control.

6.5. Programming Concepts - Frequency Across Participants

Participant State Conditional logic Iterative logic Flow of control Total
Jeff 10 0 0 0 10
Benjamin 9 0 0 0 9
Daniel 10 0 1 4 15
John 6 0 0 1 7
Allen 12 7 0 7 26
Jane 17 2 0 1 20
Ruth 10 7 1 2 20
Anne 15 3 1 3 22

 8

Morris 17 4 1 3 25
Beth 12, 15, 14, 23 3, 1, 6, 2 4, 2, 1, 1 2, 4, 2, 1 21, 22, 23, 27
Bram 10 0 0 5 15
Joseph 10 3 3 7 23

Mean 12.7 2.5 1 2.8 19
Total 190 38 15 42 285

Table 2. Frequency of each programming concept across the full set of participants.

Table 2 shows the results of our coding the full set of interviews. Three things about this table are
noteworthy. First, every participant encountered at least one programming concept during their session,
with most participants encountering a majority of the concepts. Object state was observed in all 12 of
the participants’ interviews, while flow of control and conditional logic were both used at least once by
a majority of participants. Iterative logic was the least frequently encountered concept of the four we
coded for, but was still seen in half of the sessions. Participants encountered the coded-for
programming concepts an average of 19 times during their hour-long RoboBuilder sessions. A second
item of interest is the relatively high frequency of players employing the concept of object state. The
central activity of controlling a robot, paired with the visual execution of the battle and the design of the
protocol, facilitated players attending to the current state of the robot in terms of its position, energy,
and the events that did (or could) occur during battle. We interpret this to mean that object state was
more accessible and central to the gameplay activity than the other concepts and see it as evidence for
how the design of a the environment and the webbing it provides can foreground certain concepts over
others. Finally, these data show that as participants advanced in their schooling, the frequency of use of
the concepts increased. Pre-university aged participants (rows 1-5) used an average of 13.4 concepts
during their RoboBuilder session, while university aged participants (rows 6-12) used an average of just
over 21 concepts. This seemed especially true for the iterative logic concept as only one of the pre-
university participants used it, while all but two of the older participants did. While these data do
suggest a developmental trend for the use of programming concepts in a program-to-play game, as this
was not the focus of the study, we hesitate to make any strong claims of a developmental nature and
instead note it as a possible avenue for future research.

7. DISCUSSION

Programming concepts are often taught removed from a meaningful, authentic contexts, resulting in the
observation that students know “the syntax and semantics of individual statements, but they do not
know how to combine these features into valid programs” [28, p. 17]. Research in the learning sciences
shows that creating a meaningful context is important for learning [29], a finding replicated in the CS
education literature [30], [31]. In our constructionist, program-to-play game, learners encounter
programming concepts situated within a context that provides a rich array of resources upon which
learners can interpret and employ them. The language primitives developed meaning for the players
through the iterative, construction process central to gameplay. Providing such webbed contexts aid in
the meaning-making process, as “these meanings become reshaped as learners exploit the available
tools to move the focus of their attention onto new objects and relationships” [2, p. 122]. By having
players express their ideas in the computational medium and then witness their expressed ideas enacted,
the game context provides an opportunity for learners to interact with the programming concepts and

 9

develop an understanding of the computational behavior they embody. This promotes understandings of
programming concepts that are built upon the webbing of the learning context, situated within the game
play experience, and consistent with the abstract, transferable version that educators seek to teach.

In this study we used a video game context to introduce learners to programming concepts and study
how the webbing it provided shaped the experience the learners had. There are a number of features of
the game context that make it an effective medium for such a task including the expectation of
challenges and early failures, a progression from easy to more difficult objectives, and the cultural
syntonicity between programming and the computational nature of the video game medium. The rich,
dynamic interactions of video games provide an array of potential scaffolds that collectively can serve
as an effective webbing for situating programming abstractions that can be leveraged by a diverse range
of learners based on their specific disposition, prior knowledge, and general approach to gameplay. It is
important to note that using video games as a medium for introducing programming concepts to
learners does have its drawbacks. For example, as most learners are familiar with video games, they
come with expectations about video games that may not be desirable. As one participant put it: “[In
RoboBuilder], you actually have to think, but like with other games you just sit there with the remote
control and just play or whatever.” The statement that most games do not require thought is not an
ideal mindset for learners to have going into an educational experience. A second potential drawback
for the game context is from potential repercussions if the game does not conform to players’
expectations. One high school aged participant in our study decided to end his RoboBuilder session
early, explaining that he was not a “computer gamer” and that he was more of a “systems person” (i.e.
Play Station or Xbox). While this only happened once, it is important to be aware of the various ways
learners might interpret and respond to the designed environment.

8. Conclusion

In this paper we showed how features of an introductory programming environment’s language, design,
and activity could inform and support how novices encounter and use programming concepts. Using a
program-to-play constructionist video game, we analyzed when and how 12 programming novices
encountered and used object state, conditional logic, iterative logic, and flow of control in order to
accomplish in-game goals. Using Noss and Hoyles’ [2] constructs of webbing and situated abstraction,
we identified how specific components of the environment supported the use of programming concepts
and tied the meaning making and abstraction processes to specific instances of gameplay. In taking this
approach, we argue for the importance of evaluating an environment’s full set of design features, along
with the programing activity learners engage in, and the prior knowledge they bring to the experience,
when studying novices learning to program, as they collectively contribute to the webbing within which
learning occurs. This stands in contrast to approaches that rely solely on post-test comparisons as the
primary analytic tool for such research. In bringing this lens to introductory programming experiences,
we showed in more detail how learners experience programming concepts in a way that post-test
analyses cannot. As the importance of programming grows, the question of how best to introduce
novices to these concepts becomes more important. Building on work from the constructionist tradition,
we showed how a detailed investigation of a single environment can advance our understanding of the
way learners draw on the environment to make sense of these ideas in a way that complements the post
test comparison approach. Combined, these methodologies paint a clearer picture and provide insights
into designing new introductory programming tools to teach the next generation of programmers.

 10

References
[1] C. M. Lewis, “How programming environment shapes perception, learning and goals: Logo vs. Scratch,” in Proc. of

the 41st ACM Technical Symposium on Computer Science Education, New York, NY, 2010, pp. 346–350.
[2] R. Noss and C. Hoyles, Windows on mathematical meanings: Learning cultures and computers. Dordrecht: Kluwer,

1996.
[3] D. Weintrop and U. Wilensky, “RoboBuilder: A program-to-play constructionist video game,” in Proc. of

Constructionism 2012, Athens, Greece, 2012.
[4] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and C. Solomon, “Programming-languages as a conceptual framework

for teaching mathematics,” SIGCUE Outlook, vol. 4, no. 2, pp. 13–17, Apr. 1970.
[5] S. Papert, D. Watt, A. diSessa, and S. Weir, “Final report of the Brookline Logo Project: Project summary and data

analysis (Logo Memo 53),” MIT Logo Group, Cambridge, MA, Sep. 1979.
[6] S. Papert, Mindstorms: Children, computers, and powerful ideas. New York: Basic books, 1980.
[7] A. A. diSessa, Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press, 2000.
[8] A. Kay and A. Goldberg, “Personal dynamic media,” Computer, vol. 10, no. 3, pp. 31–41, 1977.
[9] U. Wilensky, NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern

University. http://ccl.northwestern.edu/netlogo, 1999.
[10] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A.

Millner, E. Rosenbaum, and J. Silver, “Scratch: Programming for all,” Comm. ACM, vol. 52, no. 11, p. 60, Nov. 2009.
[11] M. S. Horn and R. J. K. Jacob, “Tangible programming in the classroom with tern,” in CHI ’07 extended abstracts on

Human factors in computing systems, New York, NY, USA, 2007, pp. 1965–1970.
[12] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of programming environments and

languages for novice programmers,” ACM Comput. Surv., vol. 37, no. 2, pp. 83–137, 2005.
[13] S. Papert, “Teaching children to be mathematicians versus teaching about mathematics,” Int. J. Math. Educ. Sci.

Technol., vol. 3, no. 3, pp. 249–262, 1972.
[14] R. Noss, L. Healy, and C. Hoyles, “The construction of mathematical meanings: Connecting the visual with the

symbolic,” Educ. Stud. Math., vol. 33, no. 2, pp. 203–233, 1997.
[15] D. H. Clements and D. F. Gullo, “Effects of computer programming on young children’s cognition,” J. Educ. Psychol.,

vol. 76, no. 6, p. 1051, 1984.
[16] P. Blikstein and U. Wilensky, “An atom is known by the company it keeps: A constructionist learning environment

for materials science using agent-based modeling,” Int. J. Comput. Math. Learn., vol. 14, no. 2, pp. 81–119, 2009.
[17] E. P. Goldenberg and W. Feurzeig, Exploring language with Logo. Cambridge, MA: MIT Press, 1987.
[18] U. Wilensky and K. Reisman, “Thinking like a wolf, a sheep, or a firefly: Learning biology through constructing and

testing computational theories— an embodied modeling approach,” Cogn. Instr., vol. 24, no. 2, pp. 171–209, 2006.
[19] A. Bruckman, C. Jensen, and A. DeBonte, “Gender and Programming Achievement in a CSCL Environment,” in Proc

of the Conference on CSCL: Foundations for a CSCL Community, Boulder, Colorado, 2002, pp. 119–127.
[20] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk, “Programming by choice: Urban youth learning

programming with Scratch,” ACM SIGCSE Bull., vol. 40, no. 1, pp. 367–371, 2008.
[21] D. Weintrop, N. Holbert, U. Wilensky, and M. S. Horn, “Redefining constructionist video games: Marrying

constructionism and video game design,” in Proc. of Constructionism 2012, Athens, Greece, 2012.
[22] D. Weintrop and U. Wilensky, “Program-to-play videogames: Developing computational literacy through gameplay,”

in Proc. of the 10th Games, Learning, & Society Conference, Madison, WI, 2014.
[23] C. Kynigos, M. Koutlis, and T. Hadzilacos, “Mathematics with component-oriented exploratory software,” Int. J.

Comput. Math. Learn., vol. 2, no. 3, pp. 229–250, 1997.
[24] M. Nelson, “Robocode,” IBM Adv. Technol., 2001.
[25] R. V. Roque, “OpenBlocks: An extendable framework for graphical block programming systems,” Master’s Thesis,

Massachusetts Institute of Technology, 2007.
[26] C. Hoyles and R. Noss, “Situated abstraction: mathematical understandings at the boundary,” Proc. Study Group 22

ICME-10, vol. 7, pp. 212–224, 2004.
[27] D. Weintrop and U. Wilensky, “Know your enemy: Learning from in-game opponents,” in Proc. of the 12th

International Conference on Interaction Design and Children, New York, NY, USA, 2013, pp. 408–411.
[28] L. Winslow, “Programming pedagogy-a psychological overview,” ACM SIGCSE Bull., vol. 28, no. 3, pp. 17–22, 1996.
[29] National Research Council, How people learn. Washington, D.C.: The National Academies Press, 2000.
[30] S. Cooper and S. Cunningham, “Teaching computer science in context,” ACM Inroads, vol. 1, no. 1, pp. 5–8, 2010.
[31] M. Guzdial, “Does contextualized computing education help?,” ACM Inroads, vol. 1, no. 4, pp. 4–6, 2010.

